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ABSTRACT 

The report describes a data reduction technique that obtains 

estimates of inertial sensor error model coefficients from a dynamic labora- 

tory calibration of a typical Inertial Navigation System.    The error model 

coefficients are those associated with gyros,  accelerometers,  and their 

misalignment errors that havu been found by lest and analysis to be the pre- 

dominant sources of error affecting system accuracy.     All the error terms 

considered are categorized as either fixed (independent of applied accelera- 

tion),  first-order (proportional to the first power of acceleration),  or higher- 

order terms, which are proportional to the square or cube of acceleration. 

In the case of the higher-order terms,  the error model coefficients of inertial 

grade sensors are from one to four orders of magnitude smaller than the fixed 

and first-order terms.     To obtain measurable quantities of these error 

sources requires the application of precise high-acceleration inputs from a 

laboratory test device.    Until 1971, there were no laboratory test devices 

that maintained a low angular-rate environment while providing precise high- 

acceleration inputs to permit recovery of the high-order gyro compliance 

terms.    In 1971,  the United States Air Force completed the 260-inch Radius 

Precision Centrifuge which is located at the Central Inertial Guidance Test 

Facility, Holloman AFB,   New Mexico.    The unique feature of this centrifuge 

that permits high-acceleration testing of gyros and/or systems is that the 

test specimen is located on a counter-rotating platform that isolates the 

gyros from the centrifuge angular rate.    Unfortunately,   accurate estimates 

of the error terms require more than a precision test device.    In addition to 

the test device,   one must have a positively controlled test procedure that 

varies the system orientation with respect to the input acceleration to provide 

better observation of the error coefficients in the measurement data and a 

data reduction program that provides the "best" estimates of the error 

coefficients from noisy measurement data.     This report proposes a dynamic 

Preceding page blank 



test procedure and an associated data reduction method for obtaining 

estimates of the error model coefficients from a 260-inch Centrifuge System 

Test. 

The dynamic test procedure is obtained by command torquing the 

platform gyros to drive the platform through a prespecified torque profile 

so that each axis is subjected to the applied acceleration.    Since the platform 

motion is a combination of commanded rate,  applied earth-rate,   and drift due 

to the gyro error terms,  tracking the platform motion with Euler angle rates 

provides the basis for the state dynamics.    The measurements,  obtained 

from the triad of platform accelerometers,  are functions of the acceler- 

ometer error terms and the Euler angles,  which in turn contain the drift 

motion dm. to the gyro error coefficients.    Therefore,  the problem is a 

parameter estimation problem where the Euler angles and error model 

coefficients are designed as system states to be estimated from noisy 

measurements.    Since both the state and measurement equations are non- 

linear functions of the state variables,   an Extended Kaiman Filter is applied. 

The results of two simulations verify the application of the filtering 

algorithm to the calibration problem.    The results show that significant 

improvement can be obtained in reducing the time require i to calibrate an 

Inertial Navigation System.    In addition,   a method of applying the off- 

diagonal terms of the filtering error covariance matrix provides a new 

dimension in evaluating filter performance with respect to system 

observability. 
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SECTION  1 

INTRODUCTION 

1.1      OBJECTIVE 

The objective of the report is to develop a data reduction 

technique that obtains estimates of inertial sensor error model coeffi- 

cients from a dynamic laboratory calibration of a typical Inertial Navi- 

gation System (INS).   The error model coefficients are those associated 

with the error sources that affect the ability of the inertial system to 

measure accurately the velocity, position, or attitude profile of the 

inertially guided vehicle.    These inertial measurement errors   are 

represented  by gyro, accelerometer,  and alignment errors;  they 

have been found by test and analysis to be the predominant sources of 

error affecting system accuracy [1,2].   Present day accuracy require- 

ments for inertial navigators are so stringent that gyro and acceler- 

ometer component manufacturing has reached the state-of-the-art in 

material selection, production tolerances, and assembly techniques. 

The cost of product improvement has become intolerable.    Other than 

searching for completely new developments in sensor design,  the most 

feasible approach to the problem is to find test and data reduction tech- 

niques that accurately determine all measurable sensor error sources. 

Once these errors are measured,  a systems approach can be taken to 

either compensate for the errors or select a system configuration or 

mission profile that minimizes the effects of these errors on system 

accuracy.   Computational schemes in airborne computers have become 

sophisticated   enough to   permit   accurate compensation  for  bias   and 



scale-factor errors for each accelcromete r,  provide fpr precision 

torquing of platform gyros to comprnsale for   .-eel - rostraint gyro 

drift, and finally to perform coordinate transiurmatxons to account for 

sensor misalignments.    However, this assumes that accurate knowl- 

edge of each error coefficient is available for insertion in the naviga- 

tion software program.    Gyro mass unbalance terms are usually com- 

pensated by physical adjustment of gyro-float-trim weights via a 

remote adjustment mechanism.   All the error terms discussed thus 

far are categorized as either fixed (i.e., independent of acceleration) 

or first-order terms (i.e.,  proportional to the first power of accelera- 

tion); they are the only error categories where compensation techniques 

are practical.    Therefore,  the purpose of obtaining accurate estimates 

of the&e error model coefficients,  obviously,  is to directly improve 

system performance through error compensation.    Higher-order error 

terms that are proportional to the square or cube of acceleration are 

obtained for incorporation into system error analysis programs so that 

their effects on system accuracy can be ascertained.   In addition, 

these error sources are also used in flight simulation programs to 

determine the best sensor orientations, platform orientation,  and mis- 

sion profiles for minimizing the effects of these error sources on sys- 

tem performance.    Therefore,  the purpose of obtaining accurate esti- 

mates of the higher-order error model coefficients is to provide for 

system accuracy determination and design optimization. 

1.2      PROBLKM DKSCRIPTION 

Accurate estimates of the fixed and first-order coefficients can 

be obtained by using present day laboratory test methods in which the 

■ ■*■■! 



system is precisely positioned and rotated with respect to the 

earth-rate and local-gravity vectors,  quantities which are accurately 

determined at the test site.   Sufficient measurements of the system 

output are taken to permit the performance of a least-squares- 

regression analysis on the measurement data with respect to a   math- 

ematical model of the system output.    The math model is a function of 

the desired error model coefficients and the applied earth-rate and 

local-gravity vector components.    In the case of the higher-order 

error terms,  the error model coefficients of inertial grade sensors 

are from one to four orders ol magnitude smaller than the fixed and 

first-order terms.   Obtaining measurable quantities of these error 

sources requires the application of precise high-acceleration inputs 

from the laboratory test device.    Accelerometer error terms have 

been obtained quite successfully since 1962,  utilizing precision centri- 

fuges that have the capability of applying precise acceleration over the 

range of 1 to 28 g's (i.e.,  28 times the magnitude of the local-gravity 

vector).    Gyros developed for platform stabilization systems are 

specifically designed for a very low angular-rate profile.    Therefore, 

the centrifuge environment is not compatible with the gyro design, 

since a 10- to 20-arc-sec':nd misalignment of the gyro input-axis with 

respect to the centrifuge rotational plane can couple enough of the 

centrifuge angular rate into the gyro to completely mask the rate con- 

tribution of the desired error source terms and,  in some instances, 

cause output saturation or destruction of the gyro bearing.    Until  1971, 

there were no laboratory test devices that maintained a low angular- 

rate environment while providing precise high-acceleration inputs to 

 — 



permit recovery of the high-order yyro compliance terms.    In 1971, 

after a nine-year development,  the United States Air Force completed 

the 260-inch radius precision centrifuge (Reference Figure 1.1),   which 

is located at the Central Inertial Guidance Test Facility, Holloman Air 

Force Base,  New Mexico [3],    The 260-inch centrifuge has the capa- 

bility of testing both gyro and accelerometer inertial sensors, as well 

as complete navigational systems.    The unique feature of this centri- 

fuge, which permits high-g acceleration testing of gyros, is that the 

test specimen is on a counter-rotating platform (CRP), which isolates 

the gyros from the centrifuge angular rate,  since the CRP rotates at 

the same rate but in opposition to the centrifuge main arm.    Therefore, 

under perfect counter-rotation,  the azimuth of the system under test 

remains fixed with respect to an earth reference frame.   The accelera- 

tion applied to the system is a low frequency sinusoid with a zero to 

peak magnitude from 0.25 to 100 g's.    The frequency of oscillation is 

less than 2 Hz and should be well within the system-gimbal-servo 

response so that there is no interference with the system stabilization 

function.    The 260-inch centrifuge  provides  for  the first time the pre- 

cise high-g environment necessary to validate and accurately estimate 

for a complete navigational system the sensor error model coefficients 

proportional to acceleration.    Unfortunately, accurate estimates of the 

error model coefficients require more than a precision test device. 

In addition to the test device, one must have (a) a positively controlled 

test procedure that varies the system orirnfation with respect to the 

input acceleration to provide better observatio.: of the error coefficients 

. 
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in the measurement data;  (b) a data collection sclu-mo that does not 

corrupt the measurement data; and (c) a data reduction program that 

provides the "best" estimates of the error coefficients from noisy 

measurement data.    The data processing problem is not considered in 

this report,   since it is highly dependent on the particular system 

being tested and the data acquisition equipment available in the labora- 

tory.    The problem considered is to develop a dynamic test procedure 

and an associated data reduction method for obtaining estimates of the 

error model coefficients from a 260-inch centrifuge system test.    The 

end product of the test progra.Ti is to provide a dynamic laboratory 

calibration that identifies all the significant acceleration error 

sources of the Inertial Navigation System. 

1 . 3     PROBLEM APPROACH 

The stabilization function of an Inertial Navigation System pro- 

vides base motion isolation of the inner gimbal or platform where the 

inertial sensors are located.    Any angular motion of the base or mount- 

ing frame of the INS is transmitted through the  outer system gimbals 

to the inner platform,  where it is sensed by the triad of single-degree- 

of-freedom integrating gyros.    The gyro outputs are sent to the gimbal 

stabilization loops,  which consist of stabilization amplifiers driving 

gimbal torque motors.    The end result is that,  through rotation of the 

gimbals by the gimbal torque motors, the inner platform is driven in 

such a way as to null the gyro output signals so that the inner platform 

remains fixed with respect to inertial space or any other specified 



navigational reference frame.    The gyro output angular rate WQ can be 

represented by the following performance model: 

"Oi     ^DF * DIaI + DOaO + DSaS f DIIaf + DO0aO + Dssas 

+ DIOaIaO + DISaIaS + DOSaOas) ^    4 WCMD (1- 1) 

where 

WQ.  ■ output angular rate of the ith gyro 

D_ ■ fixed restraint drift 

DT>  D«,   D„ - mass unbalance drift coefficients 

D-.,   r)0_>   Dgj^,,   D,n»   Bj.„,  Dftc - compliance drift coefficients 

aT,  a-,   a4. - applied acceleration along the gyro input, output, 
and spin axes,   respectively 

wT ■ applied rate about the gyro input axis 

^CMD  " corrrnanded angular rate due to command torque applied 
to gyro torque generator 

Neglecting the commanded angular rate for now,   the bracketed terms 

in Eq,   (1.1) cause the inner   platform to drift  from the   navigational 

reference frame,  since they are not a function of input  angular   rate, 

but are generated by error sources internal to the gyro.     In fact, these 

are the gyro error model coefficients that are to be identified. 



Assuming that the applied rate about the gyro input axis is known, the 

angular motion of the platform with respect to the base mounting frame 

(which is equal in magnitude but opposite in direction to the gyro output 

angular rate) will be a function of the gyro error model coefficients and 

the applied acceleration.    The applied acceleration for a 260-inch 

centrifuge test will be a combination of the  local  gravitational and 

kinematic accelerations.    Tracking the platform motion with respect 

to a mounting frame,  located on the counter-rotating platform of the 

centrifuge,   provides the basis for the dynamics of the system calibra- 

tion problem.    The platform 3-degrees-of-freedom motion     in be 

described in terms of three Euler angle rates.    Numerous laboratory 

tests of inertial sensors have shown that the actual physical system 

error coefficients are best described by a stochastic process whose 

behavior at any given time is adequately desc ribed by a Gaussian dis- 

tribution [4, 5, 6].    Therefore,  the  problem is  an  identification or 

parameter estimation problem,  where the Euler anr;les and error 

model coefficients are designated as system state variables to be esti- 

mated from noisy measurements.    Before discussing the measurement 

dynamics,  it should be noted that the accelerations in Eq.   (1.1) are 

defined in the sensor frame that is fixed to the inner platform; there- 

for«',   the a« i elerat ions will ho funttions of th»' Fuhr anglr  stales. 

Thfreforo,  the evolution of the lystem'l  slatr writh firm- will be a non- 

linear fumtion of th«- state variables.    One of the INS outputs is usually 

the integral of the accelerations  sensed by the triad of at«. elerometors 

mounted on the inner platform.    Sin« <  the sysU-m output  interfaces with 

an airborne digital  computer,  the velocity is quantized into velocity 
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pulses that are counted over some measurement interval.    The output is 

therefore the velocity change over the sample interval.    This implies 

that the measurement dynamic equations are discrete-time processes. 

The relationship between the system dynamics and the measurement 

sequence can be seen ir-.-n the following model of an accelerometer 

output. 

aJND H K0 + KlaI + K2aI2 + K3aI3 + KIPaIaP (1 «^ 

where 

aTNn = indicated output of the ith accelerometer 

K0 ■ bias 

K.  = scale factor 

Ky,  K, - nonlinear coefficients 

KTp = cross-axis nonlinearity 

a., a_ - applied acceleration along the accelerometer input and 
pendulous axes,  respectively 

The K-terms are the accelerometer error model coefficients to be 

identified; therefore,  they will be designated as state variables.    The 

definition of the accelerations in Eq. (1.2) in the sensor frame implies 

that they will be functions of the Euler angle states.    This in tu/n 

implies the following properties for the measurement sequence:   (a) the 

measurement dynamics will be a nonlinear function of the state vari- 

ables,  and (b) since the Euler angles depict the platform position at 



any point in time, the Euler angle states in the measurement 

sequence contain the dynamic motion generated by the gyro error 

coefficient states.    Adequately representing all the error coefficient 

states in the measurement sequence implies that the platform motion 

must be positively controlled to orient each sensor axis with respect 

to the applied acceleration.    If the platform motion is limited to the 

benign motion of the random drift plus earth rate,   an observability 

problem could occur with some of the error states.    To overcome this 

problem,  one must use the w „».~ term in Eq.  (1. 1 ) to drive the plat- r CMD 

form  through a   prespecified   torque   profile   so that each axis   of the 

platform   is   subjected  to the   applied  acceleration.    The  commanded 

gyro output is generated by applying a prespecified signal to the inter- 

nal gyro torque generator.    This dynamic test procedure permits com- 

plete rotational control of the platform so that adequate representation 

of the contribution due to each error state can be obtained in the mea- 

surement sequence.    Since both the state and measurement dynamics 

are nonlinear functions of the state variables, an extended Kaiman fil- 

ter will be applied to linearize the state and measurement trajectories 

about the optimal filtered estimates. 

This dynamic test procedure,  in conjunction with  the   filtering 

process,  will provide,   for the   first  time at  the  Central Inertia! 

Guidance Test Facility,  the capability of on-line system calibrations. 

The advantage of on-line data reduction is that the test procedure, the 

assumed  system   models, and the significance of the scate estimates 

can be evaluated while the system is under test. 
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1.4     SCOPE OF EFFORT 

The scope of the report i- as fc'lows: 

(a) Development of   he  system and  measurement  dynamic 

equations for a ( omplete Inertial Navigation System Cen- 

trifuge Test Program.   This task includes the inertial sen- 

sor  error  model  equations, the platform rate  equations, 

the  kinematic  and gravitational  acceleration  equations 

with the corresponding centrifuge coordinate transforma- 

tions, and finally the Euler rate equations for tracking the 

platform motion. 

(b) Development of the extended Kaiman filter equations. 

(c) Evaluation of the data reduction technique via the follow- 

ing simulations: 

(1) The normal centrifuge test program consists of a  1-g 

calibration in the local gravitational field prior to and 

irnmedia ely following the operating centrifuge test. 

The purpose of this test is to determine the overall 

effect of the centrifuge «environment on the fixed and 

first-order error coefficients, which are the major 

error sources.    A simulation of the  1-g calibration 

program, consisting of 17 state variables, was made, 

using the same techniques proposed for the operating 

centrifuge test. 

(2) A 10-state variable simulation was made of the centri- 

fuge operating at the 10-g level to determine the ability 

of the   filter  to  identify  the  higher-order   error 

coefficients. 
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So that  tho error mo<li;l i:ofl I njicnls in these simulations are 

representative ol an actual physical system,  the Carousel VB Inertial 

Measurement Unit developed by Delco Electronics was selected as the 

baseline Inertial Navigation System,   since it is representative of the 

type of Inertial Guidance System being used in both ballistic missile 

and aircraft navigation applications.    The United States Air Force 

selected the Carousel VD for use in their Titan IIIC series of launch 

vehicles.   The Carousel IV, which is similar to the Model VB,  is 

presently installed in the Boeing Models 747 and 707,  and McDonnell 

Douglas Models  DC-8 and DC-10 aircraft. 
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SECTION 2 

SENSOR AND PLATFORM PERFORMANCE MODELS 

The   performance   models   of the  gyro,  the accelerometer,  and 

the system platform motion are developed in this section.     The models 

contain the error terms whose coefficients are to be identified during 

the  centrifuge tests.    The   error   source  terms  are  limited  to  those 

associated with an acceleration environment.    Error terms generated 

by angular rate are neglected,   since   it   is   assumed  that  the  angular 

rate environment is limited to the benign motion of the platform with 

respect to inertial space.    Instances where this assumption could be 

invalid will be mentioned in Section 3 with the understanding that the 

performance models of this section must be expanded to include those 

error terms proportional to angular rate that contribute sigrifK ant 

error. 

2. 1      VECTOR AND MATRIX NOTATION 

Since both vector and matrix equations will be  used   throughout 

the report,   a standardized nntation will be used to distinguish 

between a physical vector and a mathematical vector.   A physical vec- 

tor will represent some physical quantity that has both magnitude and 

direction  associated  with  it:   however,   its existence in space will be 

independent of any coordinate frame.    Since  physical  vectors   will   be 

used in the application of the theorem of Coriolis,   it will be nee essary 

to indicate the reference frame in which a vector  derivative   is   being 

taken.     The   notation  for  a   physical   vector  will  be  an  underlined 

variable.    Subscripts will indicate the relative variables for which the 
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physical quantity is measured, and superscripts will indicate the 

reference frame in which a vector derivative is bein^ taken. For 

example, 

o>.,   ■ the physical angular velocity of the b frame relative 
to the i frame 

• ic 
R.     - the physical vector velocity of the e frame with respect 

to the i frame as viewed from the reference irame k 
(i.e. ,  the derivative is taken in the k frame) 

A mathematical vector is associated with the three numbers or coordi- 

nates that are the components of the physical vector relative to some 

coordinate frame.    The three coordinates representing the physical 

vector form a 3 X  1   column matrix that will  be   referred  to as   the 

mathematical vector.    The notation for a mathematical vector will be 

a variable that is not underlined.    Subscripts will indicate the relative 

variables for which the physical quantity is measured, and superscripts 

will indicate the reference frame in which the vector is coordinatized. 

For example. 

ib O 

"SJ 

rr wo' ws} 

Rk 

le 
)•       •       •   I <r   ,   r   .   r   > (  x       y       »I 
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where w.,   is coordinatized in the b frame and R.    is coordinatized in ib ic 

the k frame.    The braced array { } is introduced to save space in the 

written text; it should not be confused with a row matrix. 

Two other notations will be used throughout the text. The first 

is a direction cosine matrix, C, , which transforms a column matrix 

from frame b to frame i.    For example. 

C'R» 

Cll       c12       C13 

C21       C22       C23 

.C31       C32       C33. r L   z. 

where c .,   is the direction cosine between the jth axis in the i frame 

and the kth axis in the b frame.    The second notation is the skew- 

symmetric,   cross-product matrix.    It is the matrix form of the vector 

cross product [i.e., it represents the (cu.    X) portion of the vector 
■^ j e 

cross prod\ict co      X R] and will be desicnater' as .'allows: r _le      — ö 

w: ek A 
ic Z 

L "y 

Z Y 

■w 

-x      0 

where the first superscript e designates the reference frame in which 

the matrix elements are coordinatized,   and the second superscript 

designates by the letter k that the quantity represented is by definition 

the 3X3,  skew-symmetric,  cross-product matrix. 
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1.1     GYRO PERFORMANCE MODEL 

Greenwood [7] shows that,  from Newton's basic law of rotational 

motion,  the following vector equation is obtained: 

H = M (2.1) 

where H^ is the vector time rate of change of the angular momentum of 

a particle about a fixed point, which is equal to the vector moment M^ 

of the total external force applied to the particle about the same fixed 

point.    Equation [l. 1) can be applied to a gyro to describe the dynamic 

motion of the gyro element,   if some simplifying assumptions are made 

concerning the gyro element [8].    The gyro element consists of a spin- 

ning rotor,  a drive mechanism for the rotor,  and the supporting gim- 

bal structure as shown in Figure 2, 1.    The gyro element is assumed 

to have the following simplifying properties that are valid for practical 

applications: 

(a) The rotor spins at a constant speed about an axis of 

symmetry. 

(b) The center of mass of the rotor coincides with that of the 

gyro element. 

(c) The gyro rotor and gimbal support structure are rigid. 

Applying Eq.   (2. 1) to the gyro element gives 

H1 >M (2.2) — i,ge     — l 
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where 

time rate of change of angular niomentum of the gyro 
element ge,  with respect to the inertial reference 
frame i,  as viewed from the inertial frame 

M      torque applied about the (enter of mass of the gyro element 

Applying the first equation of Coriolis [Reference Eq.   (A. 3) in Appen- 

dix A] to the left-hand side of Eq.   (Z.Z) gives 

ft J 
— i.ge      —i.ge     -i,ge      —i.ge ft«« (2. 3) 

The angular momentum vector of the gvro element,   H.        ,   is equal to 
' — i, ge 

the vector sum of the spin angular momentum vector of the rotor,   H,. 

and the nonspin angular momentum of tlie gvro element,   II      .    Suhsli- i ■ »f —ns 

tuting this vector sum into the right-hand side- of Eq.   {?.. 3) and using 

the equality of Eq.   (2.2) gives 

M   - Hge + Hge f co. X H     + w. X  11 —     —s —ns      —i,ge       —s      —i.gi'       —ns (2.4) 

The rotor speed is assumed constant,   implying that H K     ■   0; there- 

fore,   Eq.   (2.4) reduces to 

M -  Hge + ui, x H     f «. K il —     —ns      —i.ge       —|     —i,ge      —ns (2.5) 

Equaljon (2.5) is the basic law of motion of the gyroscopic element. 

• re 
The   H ^     term  is   the   source   of  the  characteristic   dynamics   or — ns ' 
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transient response of the gyro element.    The vector cross-product 

terms contribute to the gyro's steady-state behavior. 

Since most Inertial Navigation Systems employ single-degree- 

of-freedom integrating (SDFI) gyros [9], an equation describing the 

motion or precession of the gyro element with respect to a gyro rase 

axis frame will be developed for a SDFI gyro.    Expressing Eq.   (2. 5) 

in a matrix form such that the applied torque is coordinatized in the 

case or c frame,  as shown in Figure 2. 1,  gives the following matrix 

equation for the gyro element motion: 

Mc ■ Cc Hge + Wck Cc 

ge     ns ic 
H ge     s - ' ♦ Wtk Cr    HRC 

xc      ge     ns (2.6) 

where 

C       ■ t^e gyro element to case transformation matrix go B7 

* Se H6     - time rate of change of nonspin angular momentum matrix ns 

.ck 

coordinatized in the moving gyro element frame 

W. skew-symmetric,   t ross-product matrix uf the angular 
velocity of the case frame relative to inertial space, 
coordinatized in the case reference frame 

Hj   ,  H      - are the spin and nonspin angular momentum matrices, ns 
respectively,  both coordinatized in the ge frame 

Since the gyro element motion of a SDFI gyro is constrained to pre- 

cession about the output axis,  an expression for the output axis torque, 

M^. ,  will be obtained from Eq.  (2.6).    The gyro precession angle 

about the output axis (shown as A    in Figure 2. 1) is maintained well 
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below five arc-minutes by the platform stabilization loop. Therefore 

a small-angle transformation can be assumed for the gyro element to 

case transformation. 

ge 0 1       0 

-A 0       1 
L     g j 

(2.7) 

Defi ne 

Mc     {M,. MOA, M.J 

w 
ic ' {wl' WOA'  W

SRA} 

'2.8) 

Therefore,   by the defimtion of the cross-product matrix 

w: ck 
1C 

Ui 
SRA 

L-"OA 

SRA 

0 

w. 

^OA 

0 

(2.9) 

Now 

Hf  - {O.   0.   H.) 

"'s'     I1«  Wx'   VV   I«W.} 

(2.10) 
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where 

1,1,1    - are the prim ipal moments of inertia about the ge 
axes 

An expression for obtaining the angular velocities of the ge frame is 

,ce     c 
C 1C '. ge (2.11) 

where 

w ge io.  A   ,  0>    (Reference Figure 2.1) 
c,ge      ( g       > B 

c 

-.-1        r        nT 

gej L I«J 

C      is a direction-cosine matrix,  implying that it is an orthogonal 

matrix [7 J; therefore,   its inverse is equal to its transpose.    Substitut- 

ing the appropriate matrices from Eqs.   (I. 7),   (2. 8),   and (2. 10) into 

Eq.  (2. 11) gives the following set nf equations for the ge frame angu- 

lar velocities: 

x I g     SRA 

y ÜA g (2.12) 

/,       SRA       g    I 
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Therefore,   from Eq.   (2. 10), 

H ns 

I   (UJ    - A     to ) 
x     I ^     SKA 

1   (OJ^A   I A   ) 
y   OA      g' 

•-  7/   SRA g     I- 

(2.13) 

and the transient response is reprcsenU-d by 

ft«« ns 

• • • 
VU1 - Ag ^SRA " Ag "SRA1 

Iy('oA + R
fJ (2.14) 

Equations  (2.7) through (2.14) define all the terms of Eq.   (2.6) to per- 

mit a solution for the ouiput axis torque. 

MOA !VaOA< lyVH.wl*l,.w«AA| 

-(iz ■ v wi-SRA • AI 
(wi - ««A» 

(i. • y 

(2. 15) 

The outpu*^ axis torque MQ»  anfl the time constant r    for a SDFI gyro 

are,   by the design characteristic s of the gyro,  equal to the following: 

M^A     K    - ('    A    I (u) M OA tg d     g 

- I /Q T       -IK-, 
«     y    fi 

(2. 16) 
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where 

M torque applied by the gyro torque generator 

C ,   - viscous damping torque coefficient 

(u)M     uncertainly   torque  caused by internal gyro error 
sources 

Substituting Eq.  (2. 16) into Eq.  (2. 15) and rearranging the terms gives 

the dynamic equation of motion for a SDFI gyro. 

V    .   A s l£ J  (tt)M        s 
-TU), 

Cd     I       Cd        Cd       Cd "SRA "|        g "CA 

♦ -Jir~ -i -SKA ♦ rf <-? • -«A
1
 

(I
Z" Ix' d d 

(2.17) 

Except for the first three terms, all the remaining terms on the 

right-hand side of Eq.   (2, 17) are undesirable cross-coupling terms. 

The significance of these terms should be evaluated using the specific 

design characteristics of the SDFI gyro in conjunction with the expected 

values of the external parameters generated by the operating environ- 

ment.    Gyro operation in a platform mode involves the rotational sta- 

bilization of the gimbaled platform upon which the gyros are mounted. 

If the platform is stabilized in the inertial frame of reference, then the 

last four terms o;   »he right-hand side of Eq.   (2, 17) can be neglected, 

since an inertial  frame mrchanization subjects the gyros to the most 

benign rotational environment possible.    In addition,  the time constant, 

T   , of I platform type gyro is made very small by decreasing the output 
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axis   moment  of inertia   I     and   increasing'  the  viscous   damping 

coefficient C ,.    Making the time constant small minimizes the effects 

of the transient response terms (T    A    and  T   W,-») on the loop per- 
* g    g R    OA' K K 

formance.    Those terms involving the product of the output precession 

angle A    are further reduced,   since the high-gain platform stabiliza- 

tion loop maintains A    essentially at null (less thin one arc-minute). 

As discussed in Section 1. 3,   the platform calibration program 

employs a dynamic test procedure in which the gyros are command 

torqued to drive the platform through a prespecified rotational pro- 

file.    This implies that an inertially rotating reference frame is being 

instrumented during the test program; therefore, the effects due to 

the cross-coupling terms must be evaluated to determine if any of the 

last four terms should be included in the final version of the gyro per- 

formance model.    Rewritin    Eq.   (2. 17) in an alternate form yields: 

Cd        V Cd        • 
H      g     g        O        I CM^ D SRA    g      H      g    OA s s 

(2.18) 
(Iz - Ix) A        2        2 

f       H WI -SRA + H1 (WI  - "SRA) (I
Z " Ix) 

■ s 

where 

C 
4 

O - H   "g 
'd  • 

^P,  - TT- A       output angular rate of the gyro 
s 

UJ     - applied rate about the gyro input axis 

Mt 
^riVin      TJ commanded angular rate 
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(u)a)     E i^r— - error drift generated by internal gyro error 
s        sources 

A comparison of the magnitude of the cross-coupling terms versus the 

first three terms on the right-hand side of Eq.   (2. 18) is given below. 

The given parameters are based on the design characteristics of the 

Carousel VB Inertial Measurement Unit SDFI gyros [10],  and the 

angular rate and acceleration values are from a computer simulation 

of the platfor r, rotational profile that was generated in support of the 

data reduction evaluation described in Section 1.4.    Given: 

A        1 arc-minute 

Cj ■ 62,500 gm-cm   /sec 

5 2 
Hs - 1 X  10    gin-cm   /sec 

T    = Z milliseconds 
g 

-4 
w        5,4 X 10       rad/sec 

uiqRA - 5 X  10      rad/sec 

*OA '  i^2^ X 10"8 rad/sec2 

2 
I     - I 10 grn-cm z       x ■ 

The magnitudes of the terms in Kq.   (2, 18) art»: 

-4 w. 4 w-,.,^  (  (u';tü T^      6.0  X  10       rad/sec 1 CMD 1) 

WCD A A    ^  14.5 X  10"8 rad/sec SKA    g 
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IT1 r    W^A      4.0 X  10     1 rad/sec- 
s    ■ 

Wr wen A      2.7X10 rad/sec H "1 WSRA 

' 

H» (wj - wSRA) (I   - I )« I.I X 10'      rad/sec 
s 

A comparison shows  that the cross-coupling terms can be neglected. 

Since T     is small,  the transient  response can also be neglected; there- 

fore,   Eq.   (2. 18) reduces to the following steady-state equation: 

W/-» Wr   I    i-u /--wr-v    *   'U'  ^ n J
O      ^1 CMD (2.19) 

As was shown in Eq.   (1. 1) of Chapter  1 ,   the error drift term,   (u)oon, 

is equal to the sum of the drift-producing error sources internal to 

the gyro.    Therefore,   from Eq.   (1.1),   the gyro performance model 

equation is 

-O     (DE * ÜI aI ^ Do aO ' DS a.S  * DI1 ai + Doo aO + DSS aS 

+ DIO aI aO + DIS aI aS + DOS aO aS) " WI + "CMD 

(2.20) 

As previously mentioned,  the gyro error sources i onsidered are 

limited to those normally found when subjecting the gyro to an acceler- 

ation environment.    The error term expansion in Eq.   (2.20) contains 

those terms that have been found,   by numerous tests conducted al the 

Central Inertial Guidance Test Facility,   to be the predominant sources 
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of error.    Wrigley [8 |,   Taylor [II]«   and Lorenzini [12] have excellent 

descriptions of the physjeal properlii-s in the gyro that penerale the 

error drifts. 

2. 3  ACCELEROMETEU PERFORMANCE MODEL 

The accelerometer considered in this study is a force-rebalance 

pondulous type device,  which can be represented in the simplified 

form of Figure 2.2.    Based on the behavior of a simple pendulum 

under the influence of pivot acceleration,  the acceleration force acting 

on the center of gravity of the pendulum will cause the pendulum to 

accelerate in the direction of the force and,   in addition,   cause a 

moment to be applied about the pivot,   whirh impaits an angular accel- 

eration to the pendulum.    Die rotation of the pendulum about the pivot 

is represented by the angle about the output axis A-, m Figure 2.2. 

The force-rebalance feature of the accelerometer is normally feed- 

back current flowing through a forcer roil,  which is mounted on the 

pendulous element,   reacting with a permanent magnet to drive the 

pendulum back to its null position.    With an acceleration applied to 

the input axis,  the moment about the output axis,   MnA,   is as follows: 

M^ Ä      F    1     m aT 1     - m aT 1 cos A,~ OA        ay I   y I O (2.21) 

wher 

F    " acceleration force a 

a. ■ acceleration applied to the input axis 
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1      length of the poiifluluni of mast; m 

1        1 cos A,^     effnetive length of the pendulum with respect "O to F 

Based on tin.' design ( liaracteristics of a force-rehalance accelerometer, 

M_A is also represented by; 

M 
OA h Xo ' cd ko f k Ao ■ :''m (2.22) 

where 

Ip      moment of inertia of the pendulum about the pivot or 
output axis 

C,   " viscous damping coefficient 

k      spring or elastance coefficient of the pivot hinge 

(u)M   i uncertainty torque due to internal error sources of the 
accelerometer 

Because of the high-gain rebalance loop,  A« is maintained essentially 

at null.     Therefore,  using a small angle approximation for An (i.e. , 

cos A0 m 1) and equating Kqs.   (2.21) and (2.22) gives 

kOkO OK! k (2.23) 

Comparing the left-hand side of Eq.   (2.23) with the standard form of 

a second-order transient solution 
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u) n 
n 

shows that 

-   .fuTT— U \k/ip      undamped natural frequency 

C. 

* m 1 \lt~r—      «ianipin^ ratio 

and therefore the accelerometer Umv constant,   r   ,   is 
a 

■    ilP 
a      rw       C d 

2 2 Typical values are:   Ip      7.06 gm-ini    and C.      47,000 gm-cm  /sec, 

which gives a value of 0. 3 milliseconds for r   .    Neglecting the tran- 

sient response gives the following steady-state equation: 

tIND      aj Mu)a (2.24) 

where 

ar,Mn      rnT ^D      indicated output of the accelerometer 

(u)a  :   ^—p     uncertainty In acceleration flue to internal error 
sources 
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Reference I'q.   (1.2); the uncertainly term,   (u)a,   is equal to the sum 

of the accelerat on error sources: 

(u)a     K0 ♦ (u)K] ft. f K2 ft!  + K3 aj ♦ KIp aj ap (2.25) 

Substituting Kq .   (2.25) into Eq.   (2.24) gives the accelerometer per- 

formance modfi equation: 

aIM^      KC)  ' Kl aI '  K2 A + KS aI + KIPaI a P (2-26) 

where 

Kj       (I  +  (ulKj) 

(u)K.       uncertainty in the accelerometer scale factor 

As was the Cftftft with the Ryro performance model,   the accelerometer 

error sources considered are limited to those  normally   found   when 

the accelrronu tcr is  lubjected to an acceleration environment.     The 

cross-ax.s term K p aT ap is to account for the case where an accel- 

eration applied along the pendulous axis causes an additional moment 

about the pivot; the additional moment occurs because of the moment- 

arm generated by the offset of the per.duhi'n,   which was caused by the 

simultaneous application of a. alon^ the inpu' axis.    Obviously,   the 

cross-axis contribution is small since the offset of th" pendulum is 

the angle A,  ,   which is maintained very small to prevent the coupling 

effect. 
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i.4     PLATFORM PERFORMANCE MODELS 

Based on the discussion in Section  1. S,   one   may   derive   two 

requirements   for   platform   performance   information.     The   first 

requirement   is   to  obtain  an   expression  of the  platform   rate  with 

respect to some laboratory reference frame,   in order to establish 

the system dynamic equations,  which track the platform motion.    The 

second requirement is to obtain an expression for the output of the 

platform accelerometers,  which formulates the measurement dynam- 

ics and provides the basis for the measurement sequence. 

The platform provides the stabilization or base motion isolation 

function,   implying that a vector representation of the platform rate is 

essentially equal in magnitude but opposite in direction to the gyro 

output angular rate,  ^p,. 

w. -rp " ^o t ^-SERVO (2.27) 

where 

u angular rate of the platform frame p  with respect to the 
'       platform base or mounting fixture frame r,  which is the 

selected laboratory reference frame 

o ui c-pnyro  ~ uncertainty in platform rate due to the stabiliza- 
tion loop servo error 

From Fq.   (2. 19),  Eq.   (2.27) is also equal to 

-rp ^1 ' ttCMO ' -^D + ^SERVO (2.28) 
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A matrix equation of the platform rate coordinatized in the platform 

referenco fr.ime requires a elear understanding of the vectors given 

on the right-hand  side oi'Kq,   (2..2.H).    ^j. is the angular rate sensed hy 

the gyro about its  input axis.     The motion sensed by the gyro is identi- 

cal   to   Ih«    motion   of I he   mnrr  ^imbal   platform  where  the  gyro   is 

mounted.     However, the motion of the innor gimbal  is identical to the 

motion of the system platform base or mounting fixture, since the outer 

gimbals of the system platform transmit the base motion directly to 

the inner gimbal.     Therefore,   the angular rate sensed by the gyro is 

identical to the angular  rate of the base with respect to inertial space, 

w .   .    So,   coordinatizing uj. in the base frame r gives the following 

matrix equation for the applied rate about the gyro input axis. 

L 

r 
ir (2.29) 

The commanded angular  rale,  ^••ir-v.   Mid the error drift rate,   (ujup,, 

are both generated by sourres  internal to the gyro.     They represent 

motion of the gvro element with respect to the gyro rase as generated 

by command and uncertainly torquing.     The gyro element axes,  shown 

in Figure Z»i,  will be defined as the gvro sensor axis frame s.    The 

gyro case input axis will be considered identical to the direction of the 

inner gimbal platform axis for that gyro.    In other words, the X,  Y, 

and Z gyro case input axes establish the direction of the x,  y,  and z 

inner  gimbal   platform axes  which  will   be  known  as   the  p  frame. 
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Thoroforc,  (he matrix equations lor t hr command angular rate and the 

orror drift rate,  both coordinati/.cd  in the p frame,   are: 

J* rP   s 
W

CMD     ui "»CMD 

i HU        C^   ^D 

(2. 30) 

where 

CMD -;mat 

frame 
lalrix of commanded angular rates in the sensoj 
me 

s 
wD      a matrix of error drift rates in the sensor frame 

rP 
C1"      transformation matrix from the sensor frame to the 

platform frame 

Cmnhtoiag B,.. {,.28/ tlirouRh u   W) ^ ^ ^^ ^^ ^ 

the platform rate in the platform frai une at 

xp 

rp u 
yp 

u 
L     zpj 

- Cl 

CMD *  " CP,.,1"   .„P 
r'.r  ^SERVO      (Z-il) 

The  first matrix expressmn on the ngh.-hand Bid. of Eq.   (2.31) 

actually represents the combmed contr.but.on of the X.   Y.   and Z 

fiyros.    Therefore.   Eq.   (Z. 31) can be rewritten as 
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u xp 

yp 

u L     zp J 

SGX 
SGX SGX 

WCMD]  ^D CP SGY 
WGMD +WD 

SGY 

(2. 32) 

eg SGZ 
SGZ SGZ 
CMD     WD C!   w.     +00 P 

SERVO 

C'E(-   (j      ^>   Y,   Z) are the coordinate transformations from the gyro 

sensor axes to the platform  frame.    These transformations will be 

rlffined in Section  3.    C" is the transformation from the platform base 
r r 

to the inner plntform p frame an«1 uill be deflned in Section 4.    Kqua- 

tion (2.2'M repreeenta the performance model for all three gyros; 

therefore,   IJq.   (2< 32) «an be expaiulcc' to incorporate all the terms 

from Eq.   (2   20) for each gyro.     The final form of the platform rate 

performance model matrix equation is: 

xp 
( 

"^FX" "DIX "ox Dsx' ■aix" 

yp 
CP     f CSGX\ o n        t) 0 aox 

/.p. ( Q 0         0 0 .asx. 

"niix i)               1) 
OOX         SSX P-fx - 

i Q 0             n aox 

0 0          o 
} 

L'sxJ 

^lOX DISX    DOSX ■aix 
aox" 

i o 0           0 aix asx 

0 Q 0 -aox 'sx- 

(2. 33) 
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DIOY     DISY      DOSY 
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aIY       a0Y 
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! 

HP 
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(2. 33) 
Cont. 

D
IIZ   

Dooz    DSSZ 

L   0 

^   2 
aIZ 

loz 
,2 
"sz-1 

Droz   Di.sz   Dosz 

0 

0 

0 

0 

0 

o   J L 

aiz    aoz 

aiz    asz 

aoz   asz-» 

0     0     TSF " 

0    0       o 

Lo   o      o    J Lt 

0 

0 

r       ir 
P 
SERVO 
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whore 

a .,   »Äii  '«c-ij      X.   Y,  /)  - trc th«« applied accelerations along 
the gyro input, output, and spin 
axes respectively (these will be 
defined In Section 3) 

TSF (j      X,   Y,   Z)   - are the internal gyr ■> torquer scale factors 

t   .{j   ■ X,   Y,   Z) - .ir«' the  gyro command to.-que values 
K.I 

Therefore, 

j       gj CMD, 
jth commanded angular rate 

To simplify the measurement ecjuation,   the indicated acceleration of 

the  inner gimhal platform will be defined in the accelerometer sensor 

frames.    Applying the ac ccTcrometer performance model equation, 

FA\.   (2.26)I   to all three platform a< celeromelers,   the platform indi- 

cated acceleration performance model  is: 

IND 

"V "Kox' 

AY Kov f 

LAZJ LKozJ 

K 
IX 

0 

0        K1Y 

L  0 0 K 

K 

L   0 

^X 
0 0  ' HAX 

0 K2Y 0 •u» 
0 0 

KJ LarAz 

IZ" 

alAX 

TAY 

TA/: 
(2. 34) 
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K',x 

0        K 

L  0 

0 Q 
'lAX 

3Y 
0 a3 

IAY 

0 K3Z- -aIAZ- 

KIPX 0 o    - 
"aIAX aPX 

0 KIPY 0 aIAY aPY 

.   0 0 KIPZ- ■aIAZ aPZ' 

(2.34) 
Cont. 

where 

i 

aIAj'   aPj(J X,  Y,  Z) - are the applied accelerations along the 
accelerometer input and pendulous 
axes respectively (these will be defined 
in Section 3) 

We now have all the performance models necessary to define the state 

and measurement dynamics of the calibration problem.    In the next 

section,  the applied sensor acceleration with respect to inertial space 

will be developed. 
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SECTION 3 

APPLIED ACCELERATION 

The acceleration that is applied to the inertial sensor axis 

frames is developed in this  section.    Since the major portion of the 

applied acceleration is due to the kinematic motion of the centrifuge, 

a description of the centrifuge and the various coordinate transforma- 

tions required to describe the motion will be defined. 

3. 1      DESCRIPTION OF THE 260-INCH CENTRIFUGE 

The 260-inch radius precision centrifuge,   shown in the cutaway 

view of Figure 1. 1,   is enclosed in a building 90 feet in diameter [3]. 

The main arm is a steel weldment formed by two double-edge beams 

tied together by trusses to form a single beam.    The arm is totally 

enclosed in a cylindrically shaped aerodynamic shroud (referred to as 

the dynamic cylinder in Figure 1.1),   50 feet in diameter and 11 feet 

high,   that rotates with the arm.    The aerodynamic shroud is enclosed 

in a smooth-walled,   stationary cylinder to reduce drag.    Chilled-water 

cooling plates located at the top and bottom of the stationary wall re- 

duce the temperature rise between the shroud and the stationary wall 

due to aerodynamic heating.    The main spindle,   which is 4 feet in 

diameter,   is supported by upper and lower hydrostatic oil bearings. 

The lower bearing supports the entire weight of the rotating cylinder, 

consisting of the main arm structure and shroud,  which is approxi- 

mately 45 tons.    Mounted just below the upper bearing are two drive 

motors:   a 400-horsepower induction motor to accelerate the arm 

and a 175-horsepower synchronous motor for constant rate drive. 
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The speed of the main arm is continuously variable to attain accelera- 

tion levels from 0.25 to 100 g's by means of a frequency divider with 

a vernier control and a precision frequency source.    The frequency 

divider provides the reference signal to stabilize the synchronous 

motor after the induction motor has driven the main arm up to the 

selected speed.    Speed variations of the synchronous drive system are 

further reduced by damping in the centrifuge feedback stabilization 

loop.    Angular velocity errors,   averaged over a 50-second time 

period,  have been measured at less than 3 micro-radians per second. 

The centrifuge arm is statically balanced at rest by counter- 

weights placed on the opposite end of the arm from the counter-rotating 

platform.     Dynamic balance is achieved during operation by motor- 

driven weights located on the arm structure.    The motor-driven weight 

locations are changed until the output of proximity detectors,  located 

in the upper and lower bearings,   are equalized.    Equalization of the 

detector outputs' implies that a dynamic balance has been achieved, 

since the main spindle rotational axis will be centered in the hydro- 

static bearing housings,   which were aligned to the local vertical during 

installation.    The main spindle verticality is adjustable during the 

static balance procedure to 1 arc-second using the output of the prox- 

imity detectors; changes in verticality during operation are measurable 

to 0.2 arc-second using the detectors. 

The centrifuge radius is also measured statically and dynam- 

ically.    The static radius is measured to an accuracy of 2 pans per 

million of the 260-inch radius by a micrometer consisting of three 

calibrated Invar rods and a precision stepper motor.    The motor 
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drives the rods to abut the main and CHP spindles,  thereby measuring 

the desired distance between the center of the centrifuge and the center 

of the CRP.    The change in radius or stretch of the arm due to 

g-loading and aerodynamic heating is measured to an accuracy of 

1 part per million by determining the capacitance between two plates 

that are part of a capacitance bridge network.    One plate ifl attached 

to a probe that is fixed to the CRP spindle,  which rotates with the arm; 

the other is a movable plate that is attached to the stationary wall. 

During centrifuge operation,  the stationary wall plate is moved out- 

ward |c bring it in close proximity with the plate attached to the rotat- 

ing arm; the value of capacitance between the plates and any change in 

capacitance are proportional to the distance and change in distance 

between the plates,  which in turn provide the dynamic radius mea- 

surement.    The stretch at both the top and bottom of the centrifuge 

arm is measured to detect arm droop or rise caused by unequal 

g-loading or heating of the upper and lower arm structure.    There are 

three pairs of dynamic radius-measuring stations,   equally spaced 

around the stationary wall,  to separate a change in radius from a dis- 

placement of the main spindle. 

The CRP is a cylinder,   50 inches in diameter and 50 inches high, 

that will support a 30, 000-g-lb load (i.e.,   a 300-lb load at 100 g's). 

The CRP spindle is also supported by hydrostatic oil bearings; there- 

fore,  procedures similar to those used for the main smndle permit the 

CRP spindle to be adjusted within 5 arc-seconds of vertical with an 

accuracy of 0.2 arc-second when the centrifuge ia at rest,   and changes 

in verticality are measurable to 2 arc-seconds Juring operation.    The 
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CRP drive system is a phase-lock position - -rvo   hat utilizes an error 

signal to maintain synchronous counter-rotation.     The error signal is 

obtained either from a pair of identical i6-pole rea )lvers,   one mounted 

on the main spindle and the other on the CRP spindle,   or from a pair 

of VZO-tooth gears  similarly mounted.    The error signal is amplified 

to drive two induction motors on the CRP.    Power and instrumentation 

signals are transferred to and from the main centrifuge arm and CRP 

via silver brush and slip ring assemblies mounted on the spindles. 

A simplified example of the acceleration applied to the system 

platform axes during centrifuge operation in the counter-rotating mode 

is shown in Figure 3. 1.    The simplifying assumptions of this example 

are as follows: 

(a) Perfect counter-rotation of the CRP is assumed. 

(b) The system platform error drift and gyro command rate 

are zero. 

(c) The system stabilization function is assumed to be perfect. 

(d) Earth rate is assumed to be zero. 

(e) The acceleration applied to the platform axes is limited to 

the centripetal acceleration of the centrifuge. 

The example'shows that the acceleration along the plavform axes in the 

rotational plane is a sinusoid with a zero-tü-peal< magnitude equal to 

the centripetal acceleration.    The angular rate range of the centrifuge 

is 0. 60Q rad/sec at 0. Z5 g's to 12. 176 rad/sec at 100 g's,   based on a 

radius of 260 inches and a local-gravity magnitude of 32. 1238 ft/sec   . 

The frequency range associated with the preceding angular rates is 
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0.097 to 1.938 Hz; therefon»,   as previously mentioned,   the accelera- 

tion applied to the system is a low 1'requency sinusoid. 

3.2     COORDINATE TRANSFORMATIONS 

The basic coordinate frames represented in the major trans- 

formations linking inertial space to the sonsor axes are: 

I    - Inertial frame 

E  - Earth frame 

C  - Centrifuge main arm frame 

R  - Centrifuge counter-rotat Ing platform frame 

P  - System inner gimhal platform frame 

S   - Sensor frame 

All coordinate frames will be considered right-hand orthogonal axis 

sets. 

3.2.1        Inertial  - Earth Transformation 

The inertial frame is defined at the center of the earth 

and is norrotating with respect to the "fixed stars".    The X. and Y. 

axes lie in the equatorial plane and the Z. axis is coincidonl with the 

earth's angular velocity vector,  w.   .    As illustrated in Figure 3. 2, 

the X. axis intersects the local meridian at the  initial calibration time 
i 

(i.e.,  when  t -  0).    The earth frame,   reference Figure  3.2,   is a 

tangent frame that is fixed on the rotating earth,   with its origin at the 

intersection of the geographic latitude   L,   and the local meridian at a 

point on the earth's surface corresponding to the location of the center 
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of the centrifuge main spuuilc.    The axes n re aligned with the cast, 

north,  and up directions.    The up axis.   Z   ,   is defined to be coincident r e 

with the local vertical.    Since the best physical measure of the local 

vertical is the local-gravity vector j» ,   the local vertical is considered 

coincident with the local-gravity vector and any deviations of £ caused 

by mass anomalies are assumed negligible f 13].    The north axis Y 

is in the direction of the projection of the earth's inertial angular 

velocity vector into the local horizontal plane.     The east axis  X 

completes the right-liand orthoqonal set and also lies in the local 

horizontal plane. 

From Figure 3.^,  the inert ial-earth coordinate trans- 

formation matrix is 

Ce 

i 

0 I 

s i n L 0 c o s L 

cos I, 0 sin L 

(3.1) 

The matrix representation of the  rotation of the earth frame with re- 

spect to the inertial frame,   coord matized in the earth's axes,   is 

u = -(0, co.     cos L, CJ.     sin Lj 
le      i le ic J 13.2) 

where 

u;.        7.202116 V 10       rad/sec      the scalar value of earth rate 
ic 

L      ■ 32°  "53' 26.614"  a geographic latitude of the centrifuge 
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Defining: 

WES mm.     sin L = 3. 95990552 X 10 ^ rad/sec 

WEC = w.    cos L = 6. 1232531 X 10'5 rad/sec 

The cross-product matrix form is 

W ek 
ie 

-WES WEC 

WES 

-WEC 

(3.3) 

The scalar distance between the coordinate frames,  P.   ,  remains 
ie 

constant and is equal to the earth's radius. 

Before describing the next transformation,  it should be 

noted from Figure 3. 2 that the local-gravity vector has been shown as 

acting outward from the earth,   rather than inward.    This convention is 

used in the guidance test field because of the concept of acceleration 

as measured by an accelerometer whose case is fixed on the platform, 

and the platform is mounted on the test device.     Consider the simple 

linear accelerometer,  at rest on a spne:ical homogeneous nonrotating 

earth,   illustrated in Figure 3.3.    The accelerometer input axis is 

parallel to the earth radius vector  R.   ,  and a positive output accelera- 

tion corresponds to a positive displacement of the accelerometer's 

seismic mass.    Since the case of the accelerometer is fixed,  the mass 

attraction force of the earth  F    acts on the seismic mass of the — e 

accelerometer.    The seismic mass is displaced until the restoring 
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force of the spring equals? the mass attraction force.    Because of the 

positive mass displacement,  the accelerometer will indicate a positive 

acceleration output of (Reference Figure 3. 3): 

-IND = -e = -R 

G   M e    e 1 
ie   R. je le 

e 
m (3.4) 

The second component of the local-gravity vector is due 

to the centripetal acceleration generated by earth's rotation, 

w .    V (to .    v R .   ),   illustrated in Figure 3. 4.    The specific force f   , — ie       — ie      — ie r -c 

acting on a unit seismic mass,   is equal in magnitude,  but opposite in 

direction,  to the centripetal acceleration.    Tae total force acting on 

»he seismic element is the vector addition r.A F    and f   ,  causing a — e -e * 

positive displacement,   which,   in turn,   is interpreted by the acceler- 

ometer as a positive acceleration.    Therefore,  by convention,  the 

local-gravity vector is defined as acting outward from the earth and is 

equal to the following vector equation: 

g    w.   y(w.   yR.)4i„ 
_     —ie       —ie     —ie       —R. 

G   M 
e    e 

ie    R. 
ie 

(3.5) 

3.2,2       Earth-Centrifuge Main Arm Transformation 

A number of intermediate transformations are required 

to go from the earth tangent axes to the centrifuge main arm axes [14]. 

The first intermediate transformation shown in Figure 3.5 accounts 

for any variation of the centrifuge main spindle from the local vertical. 
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t 
MM 

A tilt off of the east direction,   caused by an east-west bearing deflec- 

tion,   is represented by the angle   0     ; a tilt of the north direction, 

caused by a north-south bearing deflection,   is represented by the angle 

0     .    As discussed in Section 3. 1,   the main spindle verticality should 

be within a few arc-seconds,   so that the following small angle trans- 

formation can be used to depict the earth frame e to misaligned spindle 

axis frame   c'   transformation. 

1 o 
yc 

0 i rxc 

_ yc ^xc 
1 

(3.6) 

The second intermediate transformation shown in 

Figure 3. 5 is required to establish a physical time reference during 

the calibration program.    One of the dynamic radius-measuring stations 

discussed in Section 3. 1 is used to provide a pulse per revolution of 

the centrifuge.     The electronic pulse is used to secure an initial condi- 

tion (t  - 0) time reference and to determine the average centrifuge 

angular rate by measuring the time between pulses.    The  1-pulse-per- 

revolution axis frame is defined with the Z axis coincident with the ppr 

centrifuge spindle,  the X axis directed toward the pulse-per- 

revolution station,   and the Y axis completes (he orthogonal set. ppr F s 

From Figure 3. 5,  the transformation from the misaligned spindle 

axis frame to the pulse-per-revolution frame is 
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COS   0 sin 0 0 

Cc'      - 
- s i ti 0 COS   0 

^ 7.C 
0 

0 0 1   J 

(3.7) 

where 

0        = 90° - 0 rzc PPr 

0        ■ astronomic heading of the 1-pulse-per-revolution (ppr) 

station with respect to north 

The astronomic heading [13] is by definition the clockwise angle mea- 

sured from north to the pulse-per-revolution station. 

The last intermediate transformation shown in Figure 3.5 

transforms the  ppr  axis frame into the centrifuge main arm frame. 

The main arm frame is defined with the Z    axis along the centrifuge 
c 

spindle,   the X    axis directed outward along the centerline of the main 

arm and through the center of the counter-rotating platform,  and the 

Y    axis completes the orthogonal set.    The transformation is 

ppi 

cos 0 sin 0 0 

-sin 0 cos 0 0 

L     0 

(3.8) 
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where 

0 

ft. 

0+0 

angle  from  1-pul se-per-revolution contact to main arm 

centerline through center of CRP at t -  0 

/' 
w    dt 

c 

CO CO +   f)OJ 
CO c 

co        ■ average centrifuge angular  rate 
CO 

6co centrifuge rate variation about the average rate caused by 

variations in the main arm drive system 

Equations (3.6) through (3. 8) give the following trans 

formation for the earth-to-centrifuge main arm frame. 

cc . cc    cpPr c 
e ppr     c 

Cll C12 C13 

21 C22 C23 

C31 C32 C33 

(3.9) 

where 

c,.   =cos0cos0       -Bin0sin0 
11 ^ zc zc 

c , ~,      cos 0 sin 0       + sin o cos 0 
12 7.C zc 

.,  «   -cos 0 cos 0       »0       + cos 0 sin 0      •   0 
13 zc vc zc xc 

i-sin0sin0      •   0       +sin0cos0      «0 
zc yc zc        xc 
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■2l  - -sin 0 cos 0      . cos <p sin 0 
zc 

:22 " -sin 0 sin Ä      + cos 0 cos 0 
7-C 

c23 ■ sin 0 cos 0zc •   0       - sin 0 sin 0^ •   0xc 

+ cos 0 sin 0     «0      + cos 0 cos 0^ •    0, 
zc xc 

C31   ' ^ 

C,^    -    -0 

yc 

32 r "xc 

C33^ 

The matrix representation of the rotation of 
the centrifuge with respect 

to the earth frame.   coordinaUzed in the centr.fuge axes,   is 

-ec  -  {0.   0.  * } (3.10) 

Therefore,  the cross-product matri x is 

W ck 
ec 

0         -to o 
c 

•c        0 0 

Lo        o o 

(3. 11) 

Since the origins of the earth and c 

same,   the scalar distance  R       - 0. 
ec 

entrifuge main arm frame are the 
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1.2.3        Centrifuge Main Arm - Contnluge Counter-Rotating 

Platform Translorrpation 

Two intermediate transformations are required to link 

the centrifuge main arm frame to the centrifuge counter-rotating plat- 

form frame.    The first transformation shown in Figure 3. 6 accounts 

for any variation of the CRP spindle axis with respect to the centrifuge 

main arm axes.    In other words,   it accounts for misalignments that 

exist between the main spindle and CRP spindle,   since the centrifuge 

main arm vertical axis is coincident with the main spindle axis.    The 

angles  n      and 6       represent static as well as dynamic misalignments ■ xr yr      r 

due to g-loading.    Since both the main and CRP spindle verticality are 

within a few arc-seconds,  the misalignment between the two spindles 

should be within a few arc-seconds.    Consequently,   the following small 

angle transformation can be usod to depict the centrifuge main arm 

frame to misaligned CRP spindle axis frame   r'    transformation. 

1 0 -e yr 

0 i e xr 

e -0 xr 1 

(3.12) 

The last transformation shown in Figure 3, 6 transforms 

the misaligned CRP spindle axes into the CRP axis frame   r. 

<■ 

cos 0        -sin  B 0 

sin 0 cos B 0 (3.13) 
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win- re 

6 

e 

^w 

e   +o r o 

' angle between X    and X    axes at 1  -: 0 

:    f«   ^   dt 
0 

i CRP angular rate  = u.   + 6co 
c r 

T "co + 6UJ
C 

+ ßuJr fRoference Eq.   (3.8). ] 

CRP rate uncertainty caused bv variations in the 

CRP drive system 

Equations (3.12) and (3. 13) give the total transformati on: 

cr    cr, cr' 
n       ci2 

:21 c22 

LC31 C32 

where 

Cj .       cos G 

C|« ■   -sin 0 

c.     ii   -cos G • 0       - sin 0 • G 
ft xr 

C-JJ   
r  sin G 

c22 ' COS 0 

c^-  ■   -sin G  •  0       + cos 0   • 0 13 yr xr 
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31 yr 

32 xr 

C33  '  , 

The rotational and cross-product matrices are 

c/        {0,   0.   -w  ) er      l   ' r* 

W rk 
cr 

w 0 
r 

0 0 

0 0 

(3.15) 

The scalar distance between the coordinate frames is 

R r    + 6r cr        o (3. 16) 

where 

r      - nominal 260-inch ridius o 

6r  ■ static and dynamic change in the  radius from nominal 

Measurements of the centrifuge radius have shown that,   once the 

centrifuge is stabilized at a specified g-level,   the dynamic change in 

radius or stretch  remains constant,   implying that the change is mainly 

due to g-loading,   rather than aerodynamic heating.    Consequently, 

R       can be considered a constant at each g-level. cr 
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As mentioned in  tin* tioa   I,   the purpo.se of the counter- 

rolatmj» platform is to i.Hoi.itc the platform yyros  from the centrifuge 

anuular r.itf.    Porfecl   Isolation implies perfect counter-rotation; 

however,   the ( r.msformaf ions of this section reveal that misalignment 

hetweon the two spindles and/or variations in either the main or CRP 

drive system prevent perfect counter-rotation.   Therefore, a component 

of centrifuge rate will be sensed hy the platform gyros.    If the magni- 

tude of angular rate is large enough to stimulate instrument error 

terms proportional to rate,   then the models of Section  Z must be ex- 

panded to include those effects.     Measurement data taken thus far on 

the centrifuge environment shows (hat expansion of the performance 

models is not necessary,     llowrver,   the component of centrifuge rate 

is large enough to mask  the drift •producing terms contained in 

Eq.   (2.Z0).    As  shown by Thede | Hj.   a CRP axis misalignment of 

5 arc-seconds gives a component ol centrifuge  rate equal to 9.48y 10 
-8 

rad/sec at the  10-g operating level of the centrifuge.     This compares to 

-8 
a nominal value of a gyro compliance term ( such as HrJ of 23. 7 V 10 

rad/sec.    The centri fuyi'  rate that  is sensed by the platform gyros, 

whose outputs drive the platform via the .stabilization loops to null the 

sensed rate,   must be accounted for to distinguish between the platform 

motion due to sensed centrifuge rate and motion due to the drift terms. 

The term in the platform rate eriuation,   Eq.  (2. 33).   that accounts for 

r 
the centrifuge rate el feet   i s  to.   . ■ ir 
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r        _r    e r    c r 
w.     -Cw.     +Cw      too 

ir e    le c     ec        cr 

C    w.     + C 
e     ie C 

CO c 

0 

+ 0 

-co    - 6co 
c          r 

(3.17) 

So the variations ir the main and CRP drive  system are represented, 

and the misalignments are contained in the  C     transformation given by 

Eq.   (3. 14).     The important point is that the misalignments and rate 

variations must be measurer! quantities.     If the measurement accuracy 

is not sufficient to accurately account for the centrifuge rate effect, 

then these parameters must also be estimated by the  filtering process. 

The Inertial Navigation System will be mounted on a 

fixture located on the CRF.    Since the mounting fixture is aligned and 

leveled by extremely accurate laboratory optical equipment,   the 

mounting fixture or system platform base frame wil   be made coincident 

with the CRP frame.    Therefore,   the transformation from the centifuge 

CRP frame to the system inner gimhal platform frame will be identical 

to the platform baf.e to inner platform  p   frame,   C   ,   which will be 

defined in Section 4. 

3.2.4       System Inner Gimbal Platform-Sensor Translormation 

The system inner platform axes are defined by three 

fiducial lines that are physically inscribed on the platform.    The 

inertial instruments also have a case axis system which is physically 
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inscribed on the case and referenced to | precision mounting surface. 

The  inst rumeiils are  mounted  so that (lie case input axes are aligned 

with the platform inscribed axes.    In other words,   the X,   Y,  and  Z 

gyro case input axes establish the direction of the inner platform axes. 

The  instruments are located as close as is physically possible to the 

origin of the platform  frame and are distributed about the origin to 

maintain a balanced inner ^imbal.    The acceleromete r and gyro case 

axis system for the Carousel  VR (10) are illustrated  m Figures 3.7 

and 3.H,   respectively.    Therefore,   the locations of the instruments are 

R 

R 

p. GX 

p.GY 

RP.GZ 

p. AX 

R 

R 

p.AY 

p.AZ 

(I.   0.   -2} 

(-1.   0.   -2} 

(0.   -2.   1.5) 

(0,   -1.    -2] 

(0,   1.   -2] 

{0.  1.5,  1.51 

(X-gyro) 

(Y-gyro) 

(Z-gyro) 

(X -accelerometer) 

( Y -acce leromete r) 

( Z -accelerometer) 

(3.18) 

The true sensitive or input axis of an accelerometer is 

based on the physical  structure of the output axis and pendulous ele- 

ment.    The true input axis will be misaligned wit.   respect to the case 

axes.    The sensor frames are defined by the trvie input axes.    Fig- 

ure 3.0 illustrates the inner platform-to-sensor transformations for 

the X.   Y.   and Z accelerometers. 
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Z - GYRO 

IA 

OA 
SA 

Y- GYRO 

X - GYRO 

Figur« 8.8,     Gyro Caso Axis System 
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.SAX 
-4», 
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-i 

0 

.SAY 
0 

-1 

■♦. 

■4, 

(3.19) 

.SAZ 
0 

-1 

1 

0 

The same applies to the gyro whose true input axis is 

based on the gyro gimbal element  structure.    Figure 3. 10 illustrates 

the inner platform-to-sensor transformations for the X,   Y,  and Z 

gyros. 
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.SGZ 

n. 
o 1 

0 

1 

-n. (3.20) 

Since the instruments are mounted to the inner platform,  there is no 

rotation between the inner platform and sensor frames.    This com- 

pletes the coordinate t ransformatiuns. 

3.3      APPLIED ACCELERATION KQUATION 

The acceleration applied to the sensort  its a combination of the 

local gravitational and kinematic accelerations.    A general equation 

for the kinematic acceleration of the sensor frame with respect to the 

inertial frame is developed in Appendix A and the results contained in 

Eq.   (A. 31).    Based on the coordinate frames and t ransformationb 

defined in Section  3.2,   in conjunction with Eqs.   (A. 1) and (A. 2) for 

differentiation of a vector,  the following simplifications can be made 

to Eq.   (A. 31) for application to the centrifuge environments 

(a) *' 0,   lince earth rate is constant 
—ic 

(b) R UJ      X (u/.    X R.   ),   which can be combined with Hie ~" i e      —) e        —if»      —i e 

u).     X (w.     X R     ) term in Eq. (A.il) to give u.    X (r^,    X R.   ) 
-le       —ic»      —es —ic      —ic     —is 

R o, tince the e.irth and centriface main —ec H 

arm frame have a common origin 

0,   since the centrifuge radius is   i.ssumed 

constant at an operating g-le\ el and the origin of the CRP 

frame rotates with the centrifuge main arm 

(c)       R* 

(d)       Rc R1 

—cr       —c 
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••r 
(e) 

(f) 

• ]• 
R       = R       - 0,   since,   by alignment of the mounting 

—rp     —rp     —rp 

fixture,  the CRP frame origin is coincident with the inner 

platform frame origin 

••D • D RK        R^     - 0,   since the distance to each sensor is a -^s      -^ps 

constant and the sensors are fixed to the inner platform 

Equation (A. 31) reduces to 

R1      - Ze    XR       + w0    X R       + i1"    X R 
—is      —ec     —cs     —cr     —ps      —rp     —ps 

+ 2w.    X(w      XR       +w       XR       +cü      XR      ) 
—le       —ec     —cs      —cr     —ps     —rp     —ps 

+ 2W      X(w      XR       +w       XR     ) 
—ec       —cr     —ps      —rp     —ps 

t 2W      X (u      X R     ) + oj.    X (w.    X R.   ) —cr       —rp     —ps       —le       —ir     —is 

+ u)      X(w      XR      k -f w       X(u)      XR     ) —ec       —ec      —cs       —c r       —cr     —ps 

f M       X (UJ       X R       ) 
—rp       —rp     —ps (3.21) 

The mass attraction term taken with respect to the sensor frame is 
G    M 

c      e 
lD        T~ ; and,  adding the u,    X (u,.     X R.   ) term from Eq.   (3.21), —K.        a     £ —ie       —ie      —is n 

is     K. 
we arrive at the local-gravity vector with respect to the sensor frame 

[Reference Eq.   (3. 5)]. 

G    M 
I   ^ieX(-lexüis)+iR. 

is    R, 
is 

(3.22) 
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Dt'fine 

—< r        —tv — (1.23) 

whore 

At*; uncertainty in the counter-rotation rate due to 
nnsalignnient between the two spindles and/or 
variations in either the main or CRP drive system 

Combining Eqs.   (3.21),   [t<.Z2),   and (3.23); expanding the vector 

cross-products; and simpli t'yinn leads to the following vector expres- 

sion for the total acceleration applied at th«' sensor frame with respect 

to the inertial frame A.    . 
—is 

A!     = w6    * R       + Cü
C
    X R       ^r    X R —is      —ec      —cs      —cr     —ps     —rp     —ps 

+ 2u;.     X (^       XR      ) + 2 w.     X(A^XR   o) 
—ic       —ec     —cr —le —     —ps 

+ 2u).     X (u       X R      )   -t   2Au; K it*       X R      ) —IO       --rp     —ps —       —rp     —ps 

X (^       X R      )   ♦ u,       X (Au X R      ) ec        —ec      —cr       —vr —     —ps 

-Aw X U       X R      )  +• Aw X (Au; X R      ) -        —t-c       —ps — —     —ps 

+ u      X (u,      X R     MA —rp       —rp     —ps'     • 
(3.24) 

Since the platform rato and platform acceleration equations (t'cjs. (2.33) 

and (2.34),   respectively j use the components of applied acceleration in 
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the   sensor   frame,   we   roquiro  the   matrix   form  of  Fq.   (^.i-l) 

coordinatized in the sensor frame. 

A*    =C8cPJcrCCf2WekCeWckRc 
is        p    r |    c    e        le     c     ec     cr 

+ ^te   Cc Cr  ^r ^ *P    * ^ ie     c     r er     p    ps 

r    • ck     r 
W      Rc    + 

c L   ec     cs 
wck      ck     c 

ec      ec     cr 

+ W^ C^ 4W!j! Cr RP ec     r er     p     ps > 

0 

P    ps 

+ Cs C 

+ Kl C; %P
S - *** Cl W^ C^ C^ RP 

J   Crc42We
p

kCeCCCrwPkRP" 
t       r     e L      ie      c     r     p      rp nps 

+ Cnf^kRP     +  WPk wPkRp■ PL    rP     Ps rp  "rp wps 

♦   2AWrk Cr Wpk RP 1 
Cf     p      rp     ps 

fl) indicates Group 1 

(z) indicates Group 2. 

© 
(3.25) 

where 

Wv etc 
.     - is j^iven oy Kq.   (3. 3) 

w ck 
ec is piven by Eq.   (3. 11) 
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r 1. 

W       - is jjiven by Eq.   (i. 16) with u_      u>c   - wco,   since the 
t>u>r and ouic effci ts are now ace  unted for in the 
AwJ^ term 

AW 
rk 
cr 

0 -(6«    1 6«J 0 

(6w     + ou)   ) 0 0 

0 0 0 

[Reference Eq. (3. 13)] 

VV 
ph 
rp 

0 -u) 

U) zp 

J 
yp 

zp 

xp 

U) 
yp 

•u xp 
[Rcfcrcnrc Eq.   (2, J3)] 

*ck     *rk      *Dk W     ,   W     ,   WK     - aT the cross-product form of the ancular 
eccrro K      accelerations for the centrifuge,  CRP,  and 

platform,   respectively 

G     -  {0,   0,   g}   JS the gravitational acceleration in the earth 
frame,  where g is the magnitude of Eq.   (3. 5) 

Rc       {ro + '''   '   ^   0} [Reference Eq.   (3,16)] 

R'      - is given by Eq.   (3. 18) for the specific sensor for which 
fie applied acceleration is being determined 

R
C
      R

C
   i c;4 cr RP 

CI        cr        r    p    ps 

C    -is given by Kq.   (3.9) 

C     - is given by Eq.   {i. 14) 

Cp - will be given in Section 4 

„s 
C    - is given by Eq.   (3. in) for the accelerometers and 

Eq.   (3.20) for the gyros 
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[<]"•[<! for a,  b - e,  c,   r,  p,  s.    In other words, 
for all the C transformations between any 
two of the coordinate frames,  the trans- 
formations are orthogonal,  and,  therefore, 
the matrix inverse is equal to the 
transpose [7]. 

Group 1 and Group 2  terms are defined as the desirable and 
undesirable terms,   respectively, and will 
be discussed later in the text. 

The applied acceleration equation provides the sensor compo- 

nent accelerations for the platform rate equation,  Eq.  (2.3 3), and the 

platform indicated acceleration equation,  Eq.   (2. 34).    The procedure 

for the platform rate equation is to obtain a solution of the applied 

acceleration for each of the three gyros. 

SGX 
li,SGX 

(a^y, a-y,  a„yiis obtained from Eq.  (3.25) with 

,,   reference Eq.   (3.18), ps R p.GX' 

and C        C , rcierence Eq. (3.20). 
P        P M 

A? SGY 
i,SGY 

<a Y, a0   , a^yi is obtained from Eq.  (3.25) with 

RP RP ps p.GY 
. „s      „SGY and C    - C . 

A.   CQ7  
z iaT7'  "o»'  aS7}^S 0^tajned from Eq.  (3.25) with 

DP r.P J  /"s       ,-SGZ Rr        RK   „„ and C    - C ps p, GZ p        p 

The procedure for the p'atform indicated acceleration equation is to 

obtain a solution of Eq.  (3.25) for each of the three acceleromelfrs. 
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SAX / i 
^    SAX  ' iarAX'  aPX'   aOAXr 's 0^ta^ne^ from Eq.   (3. 2.S) with 

RP     RP 
ps p,AÄ p p 

SAY 
S.SAY aIAY'  aPY'  aOAY 

reference Eq.   (3.19). 

> is obtained from Eq.   (3.25) wi 

nP nP J  i-s       /-.SAY R' Rh    . ,, and C     -  C ps        p, AY p p 

Alt$KZ ' {aIAZ,  aPZ'  aOAz}iS obtained froin Eq-   f3'25) wi th 

ps p. AZ and C        C 

Note that the a«^, terms are not used in Eq.   (Z. 34); therefore,  only 

the aj..  and ap UTUIS need to be determined. 

Because the component solutions of the applied acceleration 

equation are embedded in tht   platform rate equations,   a careful 

observation of the terms in Group 2 will show why this group is unde- 

sirable.    The terms in  Group  2   consist  of platform   rate,   rate  of 

change of platform  rate (i.e. ,   platform acceleration),   and higher- 

order products and cross-products of the platform rate.    Embedding 

these terms implies that the set of equations in F.q.   (2. 3 •■> will be 

nonlinear,   couplcil,  difft-rential equations.    Tlu se equations would 

have to he solved at  least each i ycle of (lie  fill.»ring process  to obtain 

Vrtlue«   Iwr Ihe  pLilfoi'iii   r.ili .i.      I''< i I tiii.il i-ly ,   il   will   lie   sliovvn   ill   .''»■• 

tioiu   b cjnd 6 tlial these (enns  i an  l<t; inafl«- Rtt^ltj ll»l«!  by  Iniiiting U ■ 

magnitude of the <ommanded angular rait   and/ur i.oin^ ; lu   ( ommanru d 

angular rate to fh;crease the platform rate contribution of the drift 

lerms.    Note that  if nil the inertia!  BeiMon    99T* located |>r.    jsely 

at the renter of the inner platform,   1<"    would be /.ero and all the ps 
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Group 2 terms would vanish; in fact,   five terms in Group 1 would also 

vanish.     However,   since it  is physically impossible to do this,  the 

Group L terms must be evaluated to determine if their contribution 

can U- neglected without affecting the accuracy of the error model 

coefficient estimates. 

In the next  section,   the platform rate and indicated accelera- 

tion equations will be related to the state and measurement dynamic 

equations,   followed by the development of the extended Kaiman filter 

equations. 
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SECTION 4 

EXTENDED KALMAN FILTER EQUATIONS 

The platform rate and indicated acceleration equations developed 

over the last two sections will now be used to define the state and mea- 

surement equations.    Once these equations are defined,  the recursive 

filtering algorithm, which formulates the basis for the data reduction 

technique, will be developed from the extended Kaiman filter equations. 

Unfortunately,  the rather laborious development of the platform 

Eqs.  (2. 33) and (2. 34) was necessary to understand how one can obtain 

a prediction of the platform velocity to compare with the actual plat- 

form velocity measurement.    As will be shown later,  the difference 

between the actual and predicted measurement,   called the measure- 

ment residual,   is used to correct the filter in such a fashion that the 

estimates of the defined state variables will be "improved,"   assuming 

the actual measurements provide the best information available.    A 

brief review of the development to this point will show which variables 

constitute the "state" of the calibration problem. 

4. i     STATE VARIABLES 

As mentioned in Section 1,  the objective is to obtain estimates 

of inertial sensor error model coefficients.    In the gyro performance 

model equation,  Eq.   (2.20),  the bracketed term contains an expansion 

of the internal gyro error sources.   This expansion is actually a math- 

ematical error model that represents a general expression for those 

typical errors found during 14 years of gyro testing at Holloman AFB. 

Preceding page blank 
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Wlii< h lerma apply to ■ specifit   gyro rlepends un the physical structure 

and assembly of the gyro.    Therefore,  the first task is to identify the 

terms of the error model that represent the physical gyro error drifts. 

The second task is obviously to obtain estimates of the coefficients for 

those terms that are identified. 

Sage [I"?] discussos onr  method of identifying parameters of a 

system,   assuming  you  know  the   general  struct \re   of  the   system 

dynamie equations «ontaining the parameters.     It  consists of defining 

the parameters as state variables and reformulating the problem as a 

state estimation problem.     The  form of the state estimation problem 

considered in this dissertation is shown in Figure 4.1.     1 he system 

dynamic  model contains th«   unknorr.vn error coefficient! defined as 

state variables.     The output  zii) is a corrupted version of the state 

x(t) due to the measurement  noise v(i).     Assuming the statistics of the 

system disturbance w(l I and measurement noise are known,   we desire 

to determine a "best" estimate xlt) of the true system  state x(t)  from 

a knowledge of z(t). 

Based on the above,  the error model coefficients for all three 

gyros represented in Eq.   (2. i'i) are designated as state variables. 

The commanded angular rate term of E'cj.  {Z.ZO) is comprised of an 

unknown torquer scale factor times a known commend torque t   , shown 
g 

in Eq.   (2. 33).    The torquer scale factor of each gyro is defined as a 

state variable.    The final gyro parameters defined as  state variables 

are the misctlignmenl angles given in Eq,   (3.20) and represented 

explicitly in the platform rate equation and implicitly via the applied 

acceleration terms of Eq.   (3.?5),  which are embedded in the platform 
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I 
rate   equation.     This   implies   thai   the   platform   rat«.:   equations   are 

nonlinear functions of the state variables. 

The same philosophy is used in designating accelerometer 

parameters as state variables.    Equation (<i.25) is a mathematical 

error mode] that  represents  12 years of testing experience at Hollo- 

man AFR.     Except for the a. term,   it is identical to the performance 

model given in Eq.  (2.26).    Consequently,   the K coefficients for all 

three accelerometers represented in Eq.   (2. 34) are defined as state 

variables.    In addition,  the accelerometer misalignment angles defined 

in Eq.   (3. 19) and represented implicitly in Eq.   (2. M) via the applied 

acceleration terms are designated state variables.    Therefore,   the 

platform acceleration equation is also a nonlinear function of the state 

variables. 

To obtain a prediction of the platform velocity profile requires 

the knowledge of the inner platform angular position as a function of 

time.    Since the platform rate equations are a function of the estimated 

states, the best we can do is to obtain an estimate of the platform angu- 

lar position.     Therefore,   the last three  state variables are the Euler 

angles or,  ß,   and \ that track the inner platform motion with respect 

to the platform base (which was  showi     n Section J. 2. i to be identical 

|ii I IM<  < ! I< I '   I IM i oi-)       A   11 nl   ■ • I  llii-   t, \   ni .i, f .i  i >l  I In-  < .i I iln a I i< >II  111' n <• D n 

i S   gl Veil   in   T,i ble   4. I, 

go 



in m 

Table 4. 1.    States of the Calibration Proc ess 

xl = DFX X17 = DOOY X33 " TSFz X49 K3X 
X2 ^DFY X18 ^Dooz X34 xi 

xso -K3Y 

X3 'DFZ X19 " Dssx X35 xo 
X51 = K3Z 

X4 = DIX X20 = DSSY X36 •nr, X52 '~ KIPX 
X5 ^DIY X21 " Dssz X37 m\ 

X53 ' KIPY 
X6 " Diz X22 DIOX X38 ■ \ X54 'KIPZ 

X7 Dox X23 DIOY X39 X55 i 
X8 -DOY X24 Dioz X40 ' Kox X56 •♦, 
V :Doz X25 DISX X41 1 KOY X57: 

o 

X10 :Dsx X26^ :DrsY X42- Koz X58  - 

i 

1 

Xll   = DSY X27; Disz X43^ K1X X59 - 

X12^ 
Dsz X28 Dosx X44 K1Y X60 " 

X13 D1IX X29 nOSY X45^ Kiz X61: 

o 

a 

X14: DIIY X30 DOM X46^ K2X X62 ß 
X1S^ DIIZ X3, TSFX X47^ K2Y X63 " Y 

X16- Doox «M TSFy X48 ' K2Z 
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4.1      SYSTEM DYNAMIC MODEL 

The   system  dynamic   model   consists   of a   Mt  of Euler   rate 

equations that describe  the   motion  of the   inner  platform  during  the 

calibration process.    Since   the   motion   of  the  platform   is   uncon- 

strained,   large angle transformations are involved,  which implies 

that the order of rotation must be specified.     The sequence of rota- 

tions,   shown in  Figure 4.<d,   which give the orientation of the inner 

platform frame p with respect to the CRP frame r,  is (a,   3,   y) about 

the moving frame (x,  /,  y) axes respe«. tively.    Fn m Figure 4.Z,  the 

orthogonal Euler transformatic n from the r to p frame is 

cP r 

E 11 

E 21 

-E31 

E12 

E22 

E32 

K 13 

'23 

33 

(4.1) 

where 

E   j cos  Y cos 3 

E. . cos  Y sm 3 cos a + sin y sin a 

E., cos -y sin ß sin or - sin y cos or 

E, -sin ß 

E?;>   - cos ß cos a 

E-, ,      cos 3 sin a 

E,.       sin y cos ß 

H2 
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E.J2      sin Y s^ri ^ co8 • ■ cos Y sin • 

&-, >     sin Y 
s'n 8 s'n • + * 0s Y 

cos • 

Tho platform rates are a function of the gyro states,   reference 

Eq.   (Z. <i),   implying that,   if the hÄilcr rate equations are a function of 

the platform rate,   then the Euler angles will represent the drift gen- 

erated by the gyro states at any point  in time.    Now the applied accel- 

eration terms contained in Eq. (2.34) are a function of the Euler angles 

via thij C" transformation in Eq. (3.25).   Consequently, the gyro states 

are represented in the measurement process.   As  shown Ijy Figure 4.1, 

the system output z(t),  which is the measurement equation,  must be a 

function of the system states as a minimum criterion for the system to 

be observable [16}«     However,  just because the states are represented 

in the measurement process does not imply that the system will be 

observable.    If the measurement information is such that the filter- 

ing process has difficulty distinguishing between the states,  then we 

siy 'hat the states (which will be shown to be random variables in the 

next section) are highly correlated and therefore the system b^  defini- 

tion is unobservable [l6j.    Because of the concern for this observabil- 

ity problem,  a care 'ul evaluation was made of the filtering process 

during the simulations that are described in   Sections   5 and 6.    One 

significant discovery that was made during the simulations was that 

the system observability could be monitored quite effectively by deter- 

mining the level of correlation that existed between the Euler angle 

states.    It was found that command torquing was very effective in off- 

setting tin- effect of the unobservability condition. 
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Based on the above,  wr .low seek an expression for the Euler 

rate as a function of platform rate.    Referring to Figure 4.2,  we 

resolve the Euler rates into the inner platform frame p.    The matrix 

form of the resulting resolution is 

xp 

*yp 

•■   zp 

cos y cos ß       -sin ^       0 

• sin |3 

sin y cos ß       c os ^        0. 

(4.2) 

Solvin^ the matrix expression for the Euler rate equations gives 

at - (uj       cos Y + u      sin Y)/COS ß xp '        zp •' 

ß-u-       cosv-u)      sinv zp '        xp ' (4.3) 

v      (UJ       cos Y sin 3 ^ u,       sin v sin ß)/i-os 3 + ' xp ' zp ' yp 

where the Euler angles an- lim,fed to the  tollowing ranges to avoid the 

singularity that occurs when 3      * 90°. 

0 a       <      2TT 

TT 

'I 
TT 

0       <      y ZTX 

Sinci^ the initial value of the Euler angles (i.e. ,   at t   - 0) repreccntt- 

the small misalignments of the inner platform with respect to the CRP 

frame,  a Euler rotation seqaonce that provided a cosine term in the 

65 



denominator of Eq.   (4.3),   rather than I  sine term,   was selected.    We 

can see that another reason tor command torquing the platform is to 

prevent 0 from reaching the .singularity condition.     We now have all 

the equations necessary to define the state and measurement equations 

for the calibral ion process. 

4.3      STATE AND MEASUREMENT EQUATIONS 

\ "technical battle" is presently being waged in the literature 

concerning the proper choice of a statistical model or models for gyro 

and acceleromete r error coeffi < ienf s (4, 5, (>].     Unfortunately,   the 

classical Gauss-least-squares approach,  which has no probabilistic 

meaning,  was used for a number of years to obt^iri data from inertial 

sensors.     As discussed by .lazwinski [17] ,   there is no need to make 

any assumptions about the system noise,   since the problem is one of 

minimizing deterministic errors in the least-squa res approach.    With 

the advent of Kaiman filter applications,   a statistical description was 

required fot the system disturbance and measurement  noise 

(Reference  PTgure 4.1) in addition to the initial value of the state 

x(l   ).    Cor sequentlv,   for the last 6 /ears,  a major • ffort  has been o 

made to determine a proper choice for the error coefficient  models. 

Sin», e the objective of this report is Lo provide a general 

oata reduction algorithm  for testing an Inertial Navigation System on 

the centrifuge,   a general statistical model was selected for the first 

60 states shown in   1 able 4. 1.     The important point is that lo properlv 

apply the daia. reduction alogorilhm,  an analysis of component test 

data should be made so ihat the general statistical model employed In 

this  report can be modified to represent the actual platlorm 
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Sensors being tested.    Sutherland ami Gelb [4j   found that a random 

constant in combination with a random walk provided a good descrip- 

tion of gyro drift and an adequate description for the accelerometer 

terms.    A random constant is represented by the following stochastic 

differential equation 

x(t)  S 0 (4.4; 

where x(t,   ) is a random variable.    A random walk is represented by o 

x(t)  = w(t) (4.5! 

where w(t) is a random process and x(t   ) = 0.     Combining Kqs.  (4.4) 

and (4.5),   the statistical model assumed for the first 60 states is 

represented by the following scalar,  stochastic differential equation: 

x.(t) » w.(t) [i      1.  2 60] (4.6) 

where 

x.(t   ) 
i   o 

-  is a gaussian random variable representing the 
initial value of the ith state with mean x. (t   ) = 

t A , 1   0 

xoj  - 

E I   } 

E jhv - xoi]2[ 
is the expectation operator 

and variance ffx0-        Po- 

(w.U), t > t   } -  is. a zero mean,   gaussian white process 
(i.e.,  I ime uncorrelated) representing the 
ith state disturbance with covariance 

cw^t, T) ■ E jwi(t)wi(T)( a (rWi   ft(t -  T) 
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6(1  -  T) -  is the Hirac delta function 

ClPMO-  XOJ     w.(t)li        f) [i.d  Iho initial state,   B|(t0) 
"- -iL J/ independent of th«- disturbanc« 

process wj(t)) 

The scalar eqiitions for the last three states of Table 4.1 

(representing the Euler anglet) contain the system dynamic express- 

ions of Kq.  (4.3).    The statistical model for these states is repre- 

sented by the following set of nonlinear,  stochastic differential 

equations. 

is 

*61(t)  ■ [{w     <x) cos lx63(t)]   + w     (x) sin (x^O)]}/ 

cos Ix, pit )] %vv,{t) •61 

X. ^(t )        (u;       (X)   COS   lx,  ,(t)| 
'62 /.p 6 5' 

- u     (x) sin [x , 0(t)l } 
xp 63 

fw62(tl (4.7) 

lw(tl {u)     (x) cos [xA,(t)]   sin [x,^)) 
xp '63 62' 

where 

♦ OJ     (x) sin [x/^d)]   sin lx,-,(t))] / 
zp 63 62 

:os lx62(t)|    f wy   (x)l   f «^j(t) 

CJ     (x),   u,     (x),   u)     (x) -  are obtained from  Kq.   (2.33) with the 
^ ^' '' variables of   Table 4. 1   replaced by their 

associated state variable designations 
(i.e.,   I^py     x. etc. ) 

8b 
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*/«  t   ),   x, ,(l   ),   X/ ,(l    ) -  art' i»aussian random vanablrs 
rt-pri'scntirig I h<> initial values 01 tM 
Huli'f angles with niran x0   and 

2 i variance (rXo.    (j      61,62,63) 

w, .(t),  v/,y(t), w>-(t) -  are zero mean,  gaussian white processes 
representing the jth state disturbance 

with covariance (r    .     6(t -  T) 

(J ■ 61,62,63) 

w.(t) and x.(t   ) are independent 
J jo 

Combining Eqs.   (4.6) and (4.7) gives the following state vector 

equation for the calibration program. 

x = f(x,t) + w(t) (4.8) 

where 

x - is a 63-element vector of the state derivatives 

w(t) - is a 63-element disturbance vector 

_f(x,t) -  is a 63-dimensional vector-valued,  nonlinear, 
function of the state 

{w(t),  t > t   ) - is a zero mean,   gaussian white,  vectoi , 
disturbance process 

E    w(t)w   (T)     ■ Q(t)6(t-T) 

Q(t) - is a (63 X 6?) covariance matrix of the 
2 

disturbance process containing the (rw.     elements 

E   {x(t   )} - x    -  is a 63-element mean value initial state vector o   '     —o ... containing the XQ- elements 

■   j[x(to).xo][x(to)-xo]Tj   .Po 
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P    - IH a (63 X 63) tovarianco matrix of the initial state 
2 

vertor COnlftining the (rx0.    elements 

I T) 
U    w(t)l x(to) - xo] p for all t > to 

O - ia a 63-element null vector since the initial state 
x(t   ) is independent of the disturbance process w(t) 

The first 60 elements of Hx.t) are zero,  as can be seen from Eq. 

(4.6); the lasl  3 elements are the dynamic expressions on the right- 

hand side of the set of equations given in Eq.  (4.7). 

It is important to understand the relationship between th»- 

selected state statistical model and the physical parameters of the 

Inertial Navigation System.     Thr first 60 initial slale random 

elements,  x.(t   ),  usually  represrnl tin- variations that occur in the 
i    o ' 

sensor error coefficients,  th»1 HenHor true input axis location,   and 

the sensor torquer s< al«- factor brlwern the lime that the sensor is 

turned off ami the lime it   in I urn« d ba^ k on.      I lies« ■  raii<lom i banges 

in the N'ahu-s of the sensor v.irialile« between tmn nil and turn c)ii are 

referred to as the- sensor's   repeat iilu lit \ .     In ntber words,   it  has been 

determined from sensor    tents t bat  t be  v aim s of I ha error i oeffii ienl s, 

input  axis  misali gnment anglen,   aii<l lofWM I   '•| •!<   fÄ« loi   an   dillerent 

each time the senso r is a« 11 \ at ed .     An   i n.tl s s I s i ii Ulfg« «t n lount s oi 

sensor test  data  at  tin'  I bdlnm.in  |..i il it \   i < v e.il .  I bat  tins  l,i. i-   <<\ 

repeatability can be adequalely des. ribed \>s  a n.iu      > m probability 

law.     Once the sensor is operating,   r.uidom t banges  in die intent.»! 

mechanism o;' the sensor and th«  ••(ISOV  'ee'llnu l>   loop,   vclinb  ar» 

believed to come from source's  independent  ul  (hose ■..using tin- 

repeatability problem,  are r»,|)r»,s»iii ec| by tlu   gaussian white 
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disturbance process,  w(t).     The assumption of a gaussian distribution 

for the random operating changes is again based on an analysis of 

sensor data.    The assumptions that the disturbance is white (uncorre- 

lated in time) and independent of the repeatability sources are difficult 

to justify physically,  simply becaus'- not enough is known about the 

complex internal and external mechanisms that generate the distur- 

bances.    This is one subject  presently under technical debate.     The 

importance of these assumptions will be shown later.    This is one 

area that a careful analysis of the sensor data should be made to 

determine,  if possible,  whether the statistical model as proposed is 

an adequate approximation for the physical sensors being tested.    For 

example, if the disturbance process is determir.ed to be time-corre- 

lated,  there are techniques discussed by  Meditch [16]   and Ja/.winski 

[17]  that resolve the problem by augmenting the state vector,     aug- 

menting the state vector  (which already contains 63 elements),   for 

each sensor variable found to have a time-correlated disturbance, 

could increase the complexity of the problem tremendously.     The 

questions now are how much improvement in filter performance will 

be obtained and does the improvement warrant the increased com« 

plexity'^    As is the case in many physical problems,   a simulation may 

show that the simpler model is an adequate approximation for the level 

of accuracy desired in the state estimates. 

In the calibration problem,  the first 6ü initial state elements 

represent a slightly different initial condition;  since in the calibration 

procedure, the system has been operating for quite some time prior 

to the start of the system calibration at time t ■ t   .    For instance, in 
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the centrifuge tesl,  the initial condition does not occur until the cen- 

trifuge is stabilized at a seleclod g-lcvcl,  and a new initial condition 

is established for each additional g-level specified as part of the total 

test sequence.    Hence, the initial condition state for the calibration 

problem is actually a combination of the repeatability effect plus the 

operating disturbance input up to the time when t  - t   .    Equation (4.6) 

shows that the state process x(t) is a linear combination of two 

gaussian variables.    Since the mean value of w(t) is zero,  the mean 

value of x(t) at any point in timr will be equal to the mean value gen- 

erated by the  repeatability effect.      The variance of x(t) is simply the 

sum of the variance due to the repeatability effect plus the operating 

disturbance,   since the variance of a sum of two independent random 

variables equals the sum of their respective variances flH]. 

2 2,2 
X xO W 

(4.9) 

Consequently,   for the calibration problem,  the statistical model can 

represent the initial condition states of the first 60 state variables 

simply by adjusting the variance to include the input disturbance up to 

the time when t      t   .     The importance of the independence and gaussian 

while assumptions can now be realized,   since correlation in the 

disturbanc e process or between the two variables would complicate 

the modeling effort. 

Jhe initial value of the last three Euler states described in 

Eq.   (4.7) represents the inne.   platform misalignments with respect 

to the CRP frame.    These can be described by a gaussian distribution 

about a mean initial value,  since the normal procedure for the system 
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calibration is to align and level the platform via a standard gyrocom- 

pass technique  [2, 10].     The mean value represents the nominal 

misalignments that occur at the conclusion ol the gyrocompass pro- 

cedure, and the variati;;!! occurs due to the system mechanisation 

uncertainties.    In the cast» of the centrifuge operating test,  the plat- 

form alignment is maintained and reestablished at each g-level by 

caging the platform gimbals ( 1 O] .    Caging is accomplished by switching 

the input to the stabilization loops from the gyros to t\,e gimbal syn- 

chros and resolvcrs.    The stabilization loops use the signals from the 

resolvers to drive the gimbals until the synchros reach their electrical 

null positions,  which correspond roughly, through physical alignment 

of ihe s/nchros,  to an alignment with the platform base mounting 

frame.    The mean vaxue and variations occur via the caging procedure. 

The operating disturbance represents the random variations associated 

with the noise generated over (he small operating range of 'he driver 

amplifiers contained in the stabilization loops. 

Before proceeding to the measurement equation,  one final 

comment is required concerning the formality of Eq.   (4.8).    In Chapter 

3 of   Jazwinski fl7| ,   an outstanc'ing discussion is given,  showing that, 

since the sample functions of w(t) are a function of the Dirac delta 

function fi, e. , w(t) is delta-correlated], w(t) is not Riemann integrable 

in the mean square sense.    Therefore, Eq.  (i.8) has no mathematical 

meaning as it is presently defined,   since the equation can not be 

integrated to ohtain a solution for x(t).    However,  as shown by 

Jazwinski,  gaussian white noise is the formal derivative of independent 

Brownian motions.    A formal representation of the stochastic 

y3 
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(litforetitial emiation is 

dx(t)     f(x,t)clt f d Mt) (4.10) 

ulitTc; 

j^'<),i  > t   }   -  is a vector proci-ss oi independent Brownian 
motions 

rhc first term on the ri^ht-hand side of Eq.  (4. 10) can be integrated 

In the mean square sense or via an ordinary integral for the sample 

functions of x(t).    Integration of the second term can not be defined for 

the sample functions because of the erratic properties of Brownian 

motion.    However,   integration of the second term has been defined in 

a mean square sense by Ito and is called the Ito stochastic integral. 

Hence,  a solution of x(t) can be obtained in the mean square sense with 

the formal equation.    So that equations that contain gaussian white 

processes are integrable,  the gaussian white process is always 

assumed formally related to the independent   Brownian motion process 

|Ml),t> t    |,     In other words,  \v(t I is formally  related to the Brownian 

process as: 

w (t) ~ 
dXil ) 

at (4. 11 

The measurement equation is based on the platform acceleration 

model,   Lq.   (2* S4)« 
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Ä1ND     -,-,,) * —(t) (4.12) 

where 

—IMH " is a 3-element  inciicaled aeeeit ration vector 

h(x,t) -  is a 3-diniensional vector-valued,  nonlinear, 
function of the state 

m(t) - is a 3-element measurement noise vector 

The function h(x*t) is obtained from Eq.   (2, 34 I with the variables of 

Table 4. 1  replaced by their associated state variable designations. 

The actual INS measurements are the velocity change over the interval 

between measurements.    A first-order approximation of the vector 

velocity,  using Kq.  (4. 12) as the rate of change in velocity,   gives: 

v(t + At) - v(t)      Av      h(x,t »At + m(t)Al (4.13) 

where 

At -  is the time interval between measurements 

Av -  is the 3 element vector velocity change over the 
measurement interval 

Since the measurements are obtained at discrete time points 

(t    ,   n      1,2,3,...),    he discrete form of Eq.   (4.13) gives the final 

version of the measurement equation for the calibration problem. 

Av(t   ) ■ hi xtt    ),t  1 At   ♦ m(t   )At —   n      — —    nn —   n (4.14) 
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At -  |t f he time Ijetwet-n thfl (ri-l)tli and nth mviisu renurnl s , 
At       t     -   t       . 

n        n- 1 

(m(t   ),   n       1,2,3,... )-  is ;i ZITO ine.jti,  ^nussian uhiti-, 
vet lor,   n u-a su rcn u-nl noist." SM|UWICt 

E (£n(t   ) At }  - O for all values of n       I , 2, ^, . . . ,   since m(t   ) 
is a zero mean sequence 

E jm(«.)Atm r(ti )At(   B (At)2R(t )6.   for all J,n     1,2,3,... 

R(t   ) -  is tiie (3  ■: 3) covariancc matrix for the measurement 
noise sequence 

.I'1 

0 for j  / n 

1 fo r j     n 
is the Kronccker delta 

K    1 K(1    ) -  x   ][m(t   )J 
I  —    o —O         tl 

O for all n       1,2,3,...   since m(t 
is assunu-'i independenl of xd   ) 

E |fw(t.)]( m(l.,)l     [       O lor..11 j,n       1,2,3,...   lince m(t   ) if 
•■lamed independent of \v(t.) 

-   .1 

The accelerometers in  the system have their own feedback loops, 

referred to as  "capture loops," since they "capture" the pendulous 

element and prevent it   I rom   rotftting loo  tar from the null position. 

The initial state and stati' disturbance variations,  discussed in con- 

junction with the state f(|nation,  are generated  in the internal mech- 

anisms  of th« accele romeU-r  and  its capture loo;).      The output oi the 

aeceleromde r is a series of Av pulses thai  are processed and counted 

in the svstem computer circuitry.      The measurement  noise sequence 

is   related to the electronic noise generated in the system processing 

loop that eventually becomes the system output  velocity change. 



Consequently,   the assumption that tlu- noise sequence is independent of 

the disturhanc-e and  initial  stale variations is justified,  sime there is 

no physical dependence b« tween the Ryro and aceelerometer circuitry 

and the system output  processing circuitry.    The assumption of zero 

mean gaussian noise is hased on an analysis of system output data. 

The assumption of white noise is based on the  reasoning that there 

should not be any relat ionship between  random  electronic noise and 

the sequence of measurements being processed through the circuitry. 

The past  reference to the measurement  "dynamic" equations 

can now be understood,  since the function Mx, t) contains the dynamics 

of the velocity measurement trajectory.     It will be shown in the next 

section,   that the rather rough first-order approximation used to obtain 

the Av form of the measurement equation has a minimal impact on the 

filtering process since the only area where the approximation is used 

is in the computation of the  filter gain matrix. 

With tlu« state and measurement eqUAtioni defined,  we can now 

proceed to develop the extended Kaiman  filter equations that  constitute 

the filterinp algorithm,  which in turn completes the requirements for 

the data  reduction problem. 

4.4     EXTENDED KALxMAN FIL FER EQUATIONS AND 
FILTERING ALGORITHM 

We start the development of the '    ter equations with the given 

nonlinear state equation, which is   reneated below. 

x(l)      f(x,l M w(f ) (4.8) 
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Keeping in mind (hat the following equations are vector expressions, 

we will drop the sub-bar notation,  x, as a matter of nntational conve- 

nience.     We linearize Eq.  (4.H) about a reference or nominal trajec- 

tory, where the nominal value of the state is set equal to the fil cred 

estimate.    The filtered estimate,  x(t)t),   is defined as the   'bent1' 

estimate of the state x(t) based on measurements taken up to time "t". 

In the case of a linear  state equation,  it is well known [l6] that the 

filtered estimate is an optimal estimate,   since the Kaiman filter 

process,  which generates the estimate,   minimizes the variance of the 

filtering error.     The  filtering error,  x(t|t),  is the difference between 

the true value of the state and the filtered estimate. 

x(t|t)   ■ x(t) - x(t|t) (4. 15) 

In the case of a nonlinear state equation,   the filtered estimate is 

optimal only with respect to the linearized equation.    Whether the 

estimate is good or "best" with respect to the nonlinear stale equation 

depends on the validity of the linearization. 

The referei ce trajectory is a deterministic trajectory obtained 

by setting w(t) to zero in Eq,   (4*8) and the nominal value of the state, 

x -xftit).     Therefore, nom 

dx(l [t| 
tit f| x{t it),  l] t  > t (4.16) 
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is the equation of the reference trajectory.     We define the deviation 

from the reference trajectory as 

6x(t)   B   x(t) - x(tjt) (4.17) 

Comparing Eqs.   (4. 15) and (4. 17),  we see that the deviation is 

equivalent to the filtering error. 

Differentiating Eq.   (4, 17) and substituting the expressions 

contained in Eqs.   (4.8) and (4. 16) gives 

d5x 
dt f(x,t) - f[x(t|t).t]   I wit) (4.18) 

If the deviations from the reference trajectory are small so that the 

higher-order terms can be neglected,  a Taylor series expansion about 

the nominal filtered estimate gives 

f(x,t) - f[x(t!t),t]   ?E[x(t !i),f] 6x(t) (4.19) 

where 

Flx(t|t).t] 
[eft[&(t| 

cbc. 

t).t] 
i, j,   -  1, 2, .... 63 

is a (63 x 63) matrix of partial derivatives of the elements uljj[x,t), 

evaluated at x{t|t),  with respect to each state variable x..    Substituting 

the approximation of Eq.   (4. 19) into Eq.   (4. Ifi),  we obtain a linear 
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perturbation equation that  is valid for "small" deviations about thi- 

reference trajectory. 

d6x 
"dT Flx(t|t),t]6x(t) + w(t) (4.20) 

Since the measurements are discrete,  we discretize  Eq.   (4.20) 

so that we can develop the filter equations using the discrete form of 

the Kaiman filter.    It is a personal preference to compute the solution 

via the state transition matrix,   rather than solving the matrix Riccati 

equation to obtain the filtering error covariance matrix as  required in 

the continuous filter procedure [ 16| .     Therefore,   discretizing and 

integrating L'q.   (4. 20) over the time interval It      .,t   1   üives the o o     -i '  n- 1     n    n 

following discrete solution to the perturbation equation. 

^n*      ^Vn-r^n-l'Vl^Vr'   iDitn.i' (4-21) 

where 

D<W     /"    ^V^'n-ll'n-l'l-^ 

<t>it   ,i      ..x]   -  is the state transition matrix [16) 

The slate transition matrix is obtained by solving the following 

mainx differential equrtlion. 

*&• ^-r^n-i \inS 
F[^tn-l  I  lI»-l>'   0»C^   ln-r ^Si-l  I1«-!»] 

(4.22) 
t       ,  5   t  <  I n- 1 n 
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The initial condition lor the matrix dill«-rintial nquation is 

*lln-r  ln-rJ(,n-l   'V-l^      I {4-Z^ 

where 

I — is a (63 x 63) identity matrix 

The relationship betwet n Eqs.   (4. 22) and (4.21) should be clearly 

understood.     The purpose of the transition matrix is to transform the 

perturbation status, 6x(t     .), along tht; rofe.-ence trajectory from lime 

point t     .   to time point t   .     Ht-nce,  as  shown by Eq.   (4. 23),   the transi- 

tion matrix would logically hi; the Identity matrix at tirm- t      ..In the 

perturbation solution equation,   Eq    (4, 21),  we see that tlu- value of $> 

is at the final lime t   ,  since getting a solution requires that  the pre- 

vious value of the perturbation sti-tes ftx(1>      ) he tr.insformed along 

with the system disturbance to the solution point at time t Trans- 

forming the perturbalion states along the reference trajectory implies 

that ij) must be a function of the perturbation dynamics; Eq.   (4.22) 

verifies this Ly the F matrix of partial».     Equation (4. 22) represents 

the set of dynamic equations that permit each «Jement of the transition 

matrix to be determined at any time I over the closed interval 

[t     j,  I   ] •     Therefore,  Eq.   (4. 22) li used to obtain the elements of <&, 

evaluated at time t   ,   for solving Eq.   (4. 21). 

Solving Eq.   (4. 22) appears to be a formidable task,  sine § r.m- 

lains  3969 elements.     Fortunately,   tnis is not the cast', since the 

maximum number of differential equations will be  189.     The  reason is 
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lhat the first 60 elernonls of f (x,   t) arr zero; therefore,  the first 

60 rows of F will be zero.    Assuming each element of the last three 

rows of F will contain nonzero partials,  the maximum number of 

equations would be 3 times 63 or  189. 

It will be shown in  bection   6 that the reason F,   and therefore $, 

is a function of time is due to the applied acceleration being a function 

of time for the operating centrifuge test.    In the case of the  1-g calibra- 

tion in the local gravitational field,  the F matrix is constant since g is 

constant.     Meditch [ 16 j   shows that for a constant F matrix,   <b can be 

determined using the matrix exponential. 

(tft   ,   t     .; x(t      , it     .)]   = exp]F(t    - t     .)[ •-n      n-1 n-ln-l'J rl    K n       n-l'1 

I + F(t    - t      .) + n       n-l 

Fm(t    - t      j"1 

-r—n f^—4 m ! 

but l     - t      , ;r At,   so n       n-l 

* 

where 

i — is a (63 X tj3) identity matrix 

F - F , x(t      ,      t      ,)!   is a constant matrix L      n-l        n-l 

V 
exp x ,    -e    is the exponential function 

,in, . ^.m 
[t   ,   t      .,x(t      Jl      J]  --I + F At f F^i^V   r ...   +F     ^V      f   ... i-nn-1 n-l'n-iJ 2! m! 

(4.24) 
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The number of terms in the 4 series is obviously .1 lunction of 

the time between measuremrnts At diid the desired accuracy of <f.    A 

computer solution of Eq.   (4. 24) is defimlfly computationally more 

efficient than solving the set of differential equations of Eq.   (4. 22) for 

the time-varying * case.    The centrifuge simulation of Section 6 

reveals that the filtered estimates obtained by assuming that F was 

constant over At,  and thereby permitting Eq.   (4. 24) to be used,  were 

just as good as those obtained by determining (p via Eq.   (4. 22). 

The disturbance sequence w(t     ,) of Eq.   (4. 21) can be considered 

as a piecewise constant function of time for the measurement intervals 

(which range from 0. 02 to 1.0 second) of the calibration problem. 

Therefore,  the D(l     .) term can be simplified to 

«WK Si-r^n-i'Vi^Vi) (4 ") 

where Tis defined as 

T 

^V  W *(tn-l K-i"  *f   ^^n-   T; ^n-l  K-^   ^ 
t 
" (4.26) 

Note that the right-hand side of Eq.   (4. 26) reveals that we need to 

solve for* from t     back to t     , .    In other words, 4> must be solved n n - 1 

backward in time.    Hsu and Meyer t 19]   sn )w that a solution of <*> 

backward in time cm be obtained using the adjoint system equation. 

Hence, 4> from I    bacU to I     .   m ubtamed from lha foUowiag adjoint. n n-1 

matrix differential equatior.. 
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(4.27) 

The initial condition for the .idjomt equation is 

*lt   ,  t   ; x(t     .It     ,)!       1 (63 X 63) identity matrix 
^   n     n n- I '   n-1 x ' 

(4.28) 

With <t (t  ,   t,   x) determined from Eq.   (4. 27),  we substitute * into 

Eq.   (4. 26) to get P. 

Equation (4. 27) reveals that since 4? premultiplies F,   the fact 

that W has 60 rows of ^ero elements does not help reduce the number 

of differential equations.    Assuming the last three rows of W contain 

nonzero partials,   Eq.   (4. 27) wii) generate 3969 equations.    Fortunately, 

the assumption that F is constant over A t (based en the centrifuge 

simulation results of Section 6)   permits   T to be determined by sub- 

stituting me exponential series of <l>,  from Eq.   (4.24),   into Eq.   (4.26). 

The substitution results in the following series expression for F,  when 

F is a constexnt matrix. 

n t , t  ,, x(t   ., t 
n      n-l n-l'n-lJ -IAt + F(^y_+... +F^UiL^ 

2! 

m + 1 
_J  

(4.29) 

The discrete solution to the linear perturbation equation, 

Eq.   (4. iil),   can now be written as 

6x(t  )  - *Li   ,   t     . ; x(t     .It     .) |   ox(t     . ) + r[ t   .  t     , ; x(t     .It     ,)] n' l n      n-l n- 1 '   n-1    ' n-l l   n      n-l n-1 '   n- r J 

(4.30) 
X w(,n-l) 

where  x rep/esents ihe matrix product oi   f anu w. 
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We now develop the iinoar perturbation equation for the nunlinear 

measurement equation,   repeated below. 

Av(t  ) ■ h[ x(t  ), t   ] ^t + m(t  ) At n L       n      n J n (4. 14) 

The approach is similar to that used for the nonlinear state equation 

except that slight modifications must be made,   since Eq.   (4. 14) is an 

approximation.    As with the state equation,  we first need an expression 

for the nominal or reference measurement trajectory.    Since it is a 

deterministic trajectory, we set the measurement noise sequence 

m(t   ) to zero and select a nominal value for the state x (t  ). n nom ' n 

Av{t  ) - h[x (t  ),  t   ] At n' l   nom ' n       n J (4.31) 

The question now is:    what should the nominal state be for the 

reference measurement trajectory? 

To help answer this question, let us regress in order lo under- 

stand the selection that was made for the state equation. Expressing 

Eq.   (4. 16) as a general form of the reference state trajectory gives 

d x (t) nom 
dt fix (t),   tj 1   nom J (4. 32) 

Any solution to thr nonlim-ar >ii fferent iai equation COttM be used as a 

reference trajectory.     In the case of an arbitrary nonlinear differential 

equation,  the existence and uniqueness of solutions  remain open 

questions.     When the structure of the function f[x(t),t]   satisfies a 

Lipshitz condition,  then there exists a unique trajectory through each 
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poinl  .n stale spac o.    Assum«' thai wo tvlctcl  x (t) as the solution 

IhrouRh tlM initial a priori estimate x(t   ).     I hen, at later times it 
o 

is possible that the perturbations 

6x(t)      x(t) - x (t) noni (4.33) 

could t'et excessively large.    Since the linearized equations that form 

the basis for the Kaiman filtering frocesj   are only valid  for small 

perturbations about the x (t) we have chosen, the filiering process r nom ■ r 

for the actual system would be at best inefficient,  assuming it was 

stable.    More than likely,  the nonlinea rities that were negle  led ourinp 

linearization would caute the filter to diverge. 

It now becomes obvious that the best selection would be to base 

the value of x (t) on the measurement data; so that the reference nom 

trajectory is actually being constructed,   as the problem develops, 

based on the latest measurement information available.     What we have 

just described is the estimate produced by a Kaiman filter.    The 

filtered estimate x(t     .|t     ,) is the "best" estimate of the state at n- 1     n-1' 

time t     . ,   based on measurements taken up to time t     . . n-1 r n-1 

In the case of the measurement equation,   Eq.   (4. 14),   we see that 

we need the state at the end tune,   t   ,  or the time of the next meas are- n 

ment.    Hence,  we need to project our best knowledge of tne state 

forward in time.    The best "predicted" estimate would be the value of 

the state at time t    that lies on the reference trajectory.     We use the 

state reference trajectory equation,  Eq.   (4. 32),  to determine the 

predicted estimate of the state at time t     based on the measurements r n 
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up to time t     ,; in other words, x (t) I x(t   It      , )•    x(t   It     J is r n-l nom n!  n-1 n'  n-1 

obtained by integrating Eq.   (4. 32) from t     4 to t   . 70 »i n-1 n 

f *4mHmmi) ■ fmn^tmmih t] dt 

The solution is the nominal value we will use for the measurement 

equation. 

^ornW^J'n-l^^n-ll'n-l)*/    " fl ^ V P«  11 dt 

,n'1 (4.34) 

Equation (4. 34) shows that the predicted state estimate is obtained by 

adding the integral of the undisturbed, nonlinear state equation to the 

filtered estimate. 

Similarly,  the best predicted measurement,  Av(t   |t     .),  can be 

obtained from integrating the exact nonlinear measurement equation, 

Eq.   (4. 12),  with the measurement noise set to zero and the state equal 

to the predicted state estimate. 

/tn # Z*1"    r ^     i 
vdt = J      htxftlt^j), t 

n-1 tn-i 

]  dt 
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Ih'ncc,  ih«' hvsl predicted measui etTient is 

^JW'/^Ädw. t] dt (4.35) 

[n-l 

Note again,   that   L'q.   (4. 35) is exact and not an approximation of the 

measurement equation.     This is the predicted value of the measurement 

that will be used in the extended Kaiman filter to compare with the 

actual measurements from the Inertial Navigation System. 

Now,  for the perturbation equation,  the reference measurement 

trajectory is the approximation given by Eq.   (4. 31).    The predicted 

measurement estimate for the perturbation equation Av    is the following 

approximation with the nominal value of the state equal to the predicted 

state estimate. 

Av  (t   |t     ,) 1 h[x(t   |t      .),  t   ]  At p   n    n-1' L    ^ n    n-1        n J (4.36) 

The deviation from the reference measurement trajectory  is defined as 

ftvft  ) I Av(t   )  - Av  (t   it     . ) n' x n' p' n'  n-1' (4.37) 

Substituting Eqs.   (4. 14) and (4. 3b) into Eq.   (4. 37) gives 

6v(tn) ■ h[x(tn).  tj  At - h[x(tnitn_1),  tn]  At + m(tn) At 

(4. 38) 
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If the deviations from the reference meaBuremenl trajectory are 

small,   so that the higher-order terms can be neglected,  a Taylor 

series expansion of h(x, t) At about the predicted state estimate gives 

h[x(tn), tn] At »Mifrjt^g), tn] M 

♦»i^A-i^Siil^-^l1..!« 
(4.39) 

where 

H[x(t   |t    J, t   ] = 1      n1 n-1"    nJ 

8h. [x(t   it     J, t   ] iL      n1 n-1       nJ 

8x. At 

1.2,3        j = 1.2,  ...   ,63 

is a (3 X 63) matrix of partial derivatives of the elements of h [x(t  ),t ], 

evaluated at x(t   |t  _<). with respect to each state variable x.,  and 

finally multiplied by At.    Now Eq.   (4. |7J evaluated at t = t    and with 
n 

measurements up tr> time t     .  gives 

6x(t ) = x(t  ) - x(t   , t       ) n n n    n-1 (4. 40) 

Substituting Eqs.  (4.40) and (4. 39) into Eq.   (4. 38) gives the following 

discrete solution to the measurement perturbation. 

6v(tn) = HRtJt^j),  tnJ 6x(tn) + m(tn) At (4.41, 
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Equations (4. 30) and (4.41) give us the following linearized 

discrete system 

»«•g-«CV Vr^n-i'Vi*! »"W^CV Vr^n-i'Vi»! 

(4.42) 

ftWt.1 • HCHtJ^I, I^J  6x(tn) + m(tn) At 

^Vl) 

with the following stochastic descripti on 

|w(t.),   k = 0,1,2,   ,.,|   - is a zero mean,  gaussian white, 
vector, disturbance sequence 

E{w(tk) wT(t.)| = Q(t 
k) 6jk      for all j,k = 0,1,2 ... is the 

disturbance covariance 

|m(tn),  n = 1, 2, 3 . . . } is described in Eq.   (4. 14) 

w(tk) and m(tn) are independent for all k and n 

From Eq.   (4. 17),  with t = | 

6x(t ) --x(t  ) -x(t   |t  ) 
o'  o' (4.43) 

For the case of linear dynamics and linear measurements,  it is weh 

known f 16]  that x(t|t) is obtained by a linear operation on the measure- 

ments,  and is therefore a gaussian random vector.    Also,  by definition 

^JV'^wgi =xo (4. 44) 
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Since x{t   ) is ^aussian with a mean value of x   ,   Kqs.   (4. 44) and 
o 

(4. 43) reveal that ^x(t ) ia gaussian with the following values for its 

mean and covanance. 

E\bx(to)\   = O 

E|6x(to) 6xT{to)| ■ E{[x(to) - xo][x(to) - xo]T} (4.45) 

= P    [Reference Eq.   (4.8)] 

Finally, 6x(t ) is independent of w(t   _.) and m(t ) for all values of n . 

Equation (4.42) and the associated stochastic description meet 

all the requirements of Theorem 5. 5 of Meditch f 16] .    Therefore, 

the theorem shows that the best filtered estimates of the perturbation 

states are generated by the linear Kaiman filter, 

6x(t   11 ) = 6x(t   |t     .) + A(t )[ 6v(t  )  - H(x, t ) 6x(t   11     .) ] * n' n' n1 n-l' v r. ' n n        ' n' n-1' J 

(4. 46) 

where 

6x(t   11     ,) = *[ t  ,  t     . ; x(t     .it     ,) ]   6x(t     . j t     .) 'n1  n-l l  n     n-l n-l'  n-l   J n-l1 n-l' 

H(x,  t  ) = H[x(t   ||     .),  l   ] n l   * n' n-l'     nJ 

A(t  ) - is the Kaiman gain, whose equations will be given later 
in the text 

We are not directly interested in the perturbation states,   except 

for the equations to compute the Kaiman gain A(t ), which will be gj   en 

later.    We are interested in obtaining an expression for x(t   |t ).    If 
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wo takf 1 ho conditional  rxporl.T) ion <>(   l.'cj.   (4. 17),   vvilh  rospr« (   lo lh<' 

measurements up to time t     , ,  and let the state be at time t - t     , , r n -1 n -1 

we find that 

6x(t     . |t     J = x(t     Jf     ,) - x{l     Jt     ,) = n-ln-l Xn-In-1 *n-in-l 0 (4.47) 

Therefore,  6x(t   |t     ,) of Eq.   (4, 46) is also zero,   so Eq.   (4.46) 

reduces to 

6x(t   It ) = A(t ) 6v(t ) n1  n n n (4.48) 

Now,  if we take the conditional expectation of Eq.   (4.40),  with respect 

to the measurements up to time t   ,   and let the state be at time t = t   , n n 

we find that 

6x(t   11  ) = x(t   11 ) - x(t   I t     .) n1  n n1  n n1  n-1 (4.49) 

Note that in Eq.   (4. 49) the predicted state estimate is independent of 

the measurement at time t = t   , in other words,   you do not change tne 

predicted state estimate that was projected from time t      .  based on 

later knowledge of the measurement at time t   .     Therefore,   the last ■ n 

term of Eq.   (4. 40) does not change because of the cunditional expecta- 

tion operation.    Since we are interested in using the best predicted 

measurement defined by Eq.   (4. 35) in the extended Kaiman filter, 

rather than the approximation of Eq.   (4. 3b),  the deviation from the 

reference measurement trajectory can be redefined to be 

öv(t   )  ■ ^v(t   )  - Av(l   , t      ,) n n' n1   n-1 (4.50) 

112 



Substituting Eqs.   (4.49) and (4.50) into Eq.   (4,48) gives an expression 

for the "best" estimate of the state at time t 
n 

^JV -««JW^AMMg -A^JV,)]      (4.51) 

where 

x(tn|tn) - is the filtered estimate at time tn and therefore 
provides the "best" estimate of the state x(t  ) based oil 
measurements taken up to time t   . n 

n 

t 

•MW'^ilW*/ ^Iw-tldt- 
tn-l 

is the predicted state estimate f Reference Eq. (4, 34)] 

A(t  ) - is the Kaiman filter gain 

Av(t  ) - is the actual INS velocity measurements n' 7 

t /n 
h[x(t|t     j),  t]  dt   -    is the predicted 

tn-1 

measurement [Reference Eq.   (4.35)] 

[Av(t ) - Av(t   It     .)]   - is the measurement residual mentioned 1 n' n I  n-1 

at the beginning of Section 4 
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The equations for computing the Kaiman gain A(t ) are also from 

Theorem 5. 5 of Meditch [ 16 ] 

^^^^^["^nl'n.pH^R*]" 

■^«IW = •*l«-ilW# + rQr <4-52) 

^.IV - I1 - ^ Hl   ^,|«a.|)Cl - A(tn) H]T + A(tn) R* AT{tn) 

v he re 

H = H[x(tnjtn_1),  tn] [Reference Eq.   (4.39)] 

R* = (At)2 R(tn) [Reference Eq.  (4. 14) ] 

*=*[t  ,  t     ^xft     .It     .)] [Reference Eq.   (4.22) or (4. 24)] nn-i n-iin-i 

r=r[tn'  ^-f ^n-ll'n-l^        [ Reference Eq.   (4. 26) or (4. 29)] 

Q = Q(tn_1) [Reference Eq.   (4.42)] 

I -  (63 X 63) identity matrix 

p(tn_jjtn_j) and fM*!*  ) - are the filtering error covariance 
matrices at time t     .  and t 
respectively 

P(t   jt     .) - is the prediction error covariance matrix 

6x(t ) = x(t   it     ,) = x(t ) - x(t   It     J   is the prediction error 
"' "^ " n| "^     [Reference Eq.   (4.40)] 

6x(tn-l> " ^n-l^n-l) ^^n-l» " ^.iK-l1   is the flite/ing 

error [Reference 
Eq.   (4.17)] 
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Equation (4. 51) is known a.s the oxlendod Kaiman filter,   since it 

applies to the nonlinear state and measurement equations.    In other 

words,  it extends the filtering process beyond the linear perturbation 

equations of Eq.   (4.42).    It is important to note,  however, that the 

Kaiman gain is baaed on the linear perturbation equations.    Therefore, 

the requirement that the state and measurement deviations must remain 

small is still a constraint on the filtering process.    This can be seen 

in the second term of Eq.   (4, 51).    The second term,  consisting of the 

Kaiman gain multiplying the measurement residual,  is called the 

correction term,   since it corrects the predicted estimate x{t    t     .) n    n-1 

based on the measurement data.    If the linearization is invalid,  the 

Kaiman gain will apply an "invalid" correction that will degrade the 

filtered estimate.    Note that the approximation of the Av equation, 

Eq.   (4. 13),  is contained only in the Kaiman gain computation,   as was 

mentioned in Section 4. 3,    The simulation results show that the effect 

of this approximation is negligible,  as long as At is maintained 

reasonably small.    The most important point to understand is that 

Eq.   (4. 51) is the solution to the calibration problem.    It formulates the 

data reduction method to obtain the best estimate of the slates in 

Table 4, 1.    A schematic of the extended Kaiman filter algorithm is 

shown in Figure 4. 3.     The algorithm simply implements Eq.   (4. 51). 

The simulations described in   Sections 5 and 6 will provide 

answers to most of the questions raised in this section.    The questions 

answered by the simulations are: 

(a)       Is the linearization and therefore the filtering process 

valid? 
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(b) la there an obbervabilily problem,  and,  if so,  can the data 

reduction technique resolve it? 

(c) Dots the Av approximation prevent filter convergence? 

(d) Can the computation of the filter be simplified by assuming 

Fix,   t]   is constant over the measurement interval,  and 

thereby permit «t and F to be determined by the simple 

power series forms of Eqs.   (4.24) and (4.29) respectively0 

The only question that remains is the impact on the assumed statistical 

model if the disturbance process is found to be correlated.    Bucy and 

Joseph [20]   show that correlated noistj can be approximated quite well 

by uncorrelated noise having the same .'aw frequency spectral density 

as the correlated process.     IJiey claim that the approximation is valid, 

provided that the time conslant of thfl no'se ig small with respect to the 

total filtering time.    In thuse oases where .1 correlated model was 

assumed for gyro drift,   the Umc conatanl was specified to be in a 

range of 20 to 50 seconds.     bections   ri and 6 will show thai I he total 

filtering time will be  10 to 15 minutes per g-level for the centrifuge 

calibration and 2 to 3 hours tot the 1-g calibration.     Therefore,  the 

assumed statistical model with the adjusted variance proposed by Bucy 

and Joseph may be an excellent alternative to augim uting the state 

vector. 
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SECTION 5 

SIMULATION OF A 1-n CALIBRATION 

A centrifuge test program normally consists of a 1-g calibration 

in the local gravitational field prior to and immediately following the 

operating centrifuge test.    The purpose of this test is to determine 

the overall effect of the centrifuge environment on the fixed and first- 

order error coefficients.    The results of a 17-state simulation, using 

the same techniques proposed for the operating centrifuge test,  are 

contained in this section.    Measurement data was generated by 

simulating the platform motion due to error drift,  earth-rate input, 

and a prespecified command-torquing profile.    The measurement 

data was input to the extendod Kaiman filter algorithm,  defined in 

Section 4,  to obtain estimatt-s of 14 inertial sensor parameters and 

the three Euler angle states used to track the platform motion.    The 

simulations described here and in Section 6 were developed and 

operated, over a 6-month time period, on a Control Data Corporation 

7600 scientific computer located at Thi Aerospace Corporation, 

El Segundo,  California. 

5. 1     SIMULATION STATES AND EQUATIONS 

Since the applied acceleration is limitea to 1  g,  only the fixed 

and first-order sensor coefficients contribute significantly to the 

gyro drift and accelerometer output uncertainty.    As will be shown 

in Section 6,   the higher-order accelerometer coefficients  range Iron. 

Z 3 5 to 12 fig/g    for the second-order terms and 3 ug/g    for the third- 

order terms,  where 1  M^g      1  x 10      ^'s.    The gyro higher-order 

Preceding page blank 
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compliance terms range from 3 to 4 meru/g  ,  wiiere a meru is a rate 

unit defined by 

1 earth- rate-unit (eru) ~- 7,292116 X 10      r ad/sec "* 15 de g/hour 

-3 1  miili-earth-rate unit (meru) a 10      eru 

and is obviously based on the earth's rotatioral speed w.   . / r je 

The 14 sensor parameters and three Euler angles are defined 

in Table 5.1.    All the fixed and first-order accelerometer terms 

normally considered in a platform calibration have been included.     In 

the case of the gyro, the mass unbalance was limited to the input axis 

term.    One misalignment angle for each type of sensor was included 

to evaluate the ability of the filtering process to estimate sensor 

misalignments.    Since the purpose of the simulation was to validate 

the data reduction method, a sufficient number of states were included 

to represent all (lie basic types of fixed and   :rst-order terms usually 

determined from a physical calibration process; however,  the total 

number of states was limited to keep the complex task of structuring 

and analyzing the filter tractable. 

Prior to an Inertial Navigation System test,  a sequence of com- 

ponent tests is performed during the development phase of the plat- 

form.     This implies that the basic structure of the sensor models 

should be fairly well defined before the platform lests are conducted. 

Since one of the main purposes of the simulation was to validate the 

linearization and determine the effect of the Av approximä;ion con- 

tained in the * and H terms of the gain computation,   Eq.   (4.52),   no 

additional modeling errors were considered olsc-wnere in the  'ilter. 
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In other worrls,  it was assumed that the model used to generate the 

measurement data and the model c ontaimd  in the state and measure- 

ment dynamics of the predicted filler loops  (reference Figure 4.3) 

were identical.    This does not imply that model inaccuracies will not 

exist in the physical application of (he algorithm.    In fact,  as dis- 

cussed by Jazwinski in Chapters 7 through 10 of Reference [17] , 

model inaccuracies can cause serious degradation or divergence of 

the filtering process.    An example of the degradation caused by 

including the Av approximation in the measurement prediction loop, 

rather than the gain computation,   is shown in the simulation results. 

However,   additional investigations of the effects of modeling error 

are recommended for future study. 

Two additional simplifying assumptions were made with respect 

to the platlorm  rate equation,   Eq.   (2.33).    The internal gyro torquer 

scale factors were assumed to be unity,   to limit the number of states 

in the simulation,  and,  finally,  the servo error term was assumed to 

be zero.     The servo error term is considered to be a deterministic 

quantity,  whose value is obtained from a servo analysis and test  of 

the platform stabilization loop. 

The Simulation equations are obtained from a combination of 

Eqs.   (3.25),   (2.33),  and (2.34).    .Section  B. 1 of Appendix  B shows 

that the contribution of the Group 2 terms of Lq.   \3.25) can be 

neglected,   and,   since the centrifuge is nonoperating for the 1-g 

calibration,  the applied acceleration equation reduces to 

A0 

is 
C

S
CPG

C 

p   r 
(5. 1) 
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C^ - is the Eulcr transforiiiation matrix given by hq,   (4, 1) 

C    - is obtained from Eqs.   (3. 19) and (3.20) with the rnis- 
" alignment angles defined in Table 5. 1 

G    - is defined by Eq.   (3. 25) with g = 1 

Equation (5.1) gives the acceleration applied to each gyro, which is 

used, along with the states designated in Tible 5. 1, to obtain the 

following set of platform rate equations from Eq.  (2.33): 

w      = -x4 - x. E, . + x. x4 , E. , - TGX xp 1        4     13        4    13    33 

E12 WEC - E13 WES 

w      - -x2 - x5 E23 - TOY -  E22 WEC -  E23 WES (5. 2) 

uzp =xl x13 +x13x4 E13 +x13 TGX " x3 

"x6 E33 '  TGZ " E32 WEC "  E33 WES 

where 

EI2 = Cx17 SX16 cx15 + sx17 sx15 

E13 = CX17 SX16 8X15 ' sx17 cx15 

E22 = cx16 cx15 [Reference Eq. (4. 1)] 

E23 ' Cx16 SX15 

E32 ' Sx17 8X16 Cx15 " cx17 8X15 
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'33 sxj^ sxi6 sx 1 5 ^ rvl7 cxic: 

WEC,   WES - are the earth rate components defined n Eq.   (3.3) 
and represented in co.    I Sec  Eq.   (3.17)] 

TGX,   TGY,   TGZ -   are the gyro command torque values of 
Eq.   (2.33) 

With the platform  rates defined by Eq.  (5.2),  we can define the 

state vector equation directly from Eq.   (4.K). 

x = f(x)  ♦- w(t) (5.3) 

where 

x and W arc 1 7-fiemt-nt vectors 

fix) -   is a 17-dimensional vector-valued function 

The only difference between Eq.   (5.3) and Eq.   (4.Ö) is the dimen- 

sionality of the equation and the tact that  {_ is not an explicit function 

of tinif.    We know from Section 4 ihai the first 14 elements of fare 

zero,  and the last three elements contain the dynamics of the lystem 

platform rates. 

f. c  i (a/      cos x,.,   ♦ U       sin x(^)/cos x., 
15 xp 1 ( /p I ' 16 

f. /   - w      cos x,- -  w       sin x... 16        zp 1( xp 17 

f,.,  > (M      cosXi-,  sinx./  +CJ      sinx.-j 8inx1/)/cos 

(5.4) 

17      '  xp u ) zp 17 in1 :16 yp 



The statistical description of Eq.  (5, 3) is identical to Eq.   (4. 8) with 

the dimensionality adjusted j'rom 63 to 17. 

The measurement equation is obtained in a similar manner as 

the state equation.    Starting with Eq.   (5. 1), we obtain the acceleration 

applied to each accelerometer,  which is used in conjunction with the 

states designated in Table 5. 1 to obtain the following set of equations 

for the elements of h[x(t   )]  from Eq.   (2.34): 

hl   = W + X10<tn) Ei3K) - x10(tn' x14(t
n

) «llV 

h2=x8(tn)+xn(tn)E23(tn) (5.5) 

h3-xc,(tn)+x12(tn)E33(tn) 

The measurement equation is identical to Eq.   (4. 14) with h[x(t   )] 

defined by Eq.  (5. 5).    Note that h is not an explicit function of time 

t   . n 

5.2      MEASUREMENT SIMULATION 

This section contains a description of the part of the simulation 

program that generated the measurement data.     Table 5.2 contains a 

list of the mean values Xr,.,  and standard deviations (rv     ,  used in the 

gaussian subroutine prog rani to formulate the initial state vector 

x(t   ).    Since the simulation values are consioered the true state —   o 

values,  we will define x(tl to be 

X  t )    "   X. =      X — —true        —sm; (5.6) 
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The mean values are representative of the sensor coefficients and 

misalignment magnitudes obtained from actual calibrations performed 

on the Carousel VB Inertial Measurement Unit.    The standard devi- 

ations were chosen to hv representative of the Carousel VB 1-s gma 

error budget [lO]  given in Table 5,3.    The error budget represents 

measured uncertainty from a combination of sensor and platform 

calibration data taken over 90-day intervals.    Since the error budget 

uncertainty represents changes from the last calibration,  in addition 

to calibration uncertainties,  both the repeatability effect and operating 

random changes discussed in Section 4. 3 of Section 4 are included in 

the error budget.    Comoaring Tables 5.2 and 5.3,  we see that the 

major portion of the error budget was included in the initial state 

deviations,  which represent (he lack of repeatability from turn-off to 

turn-on,  plus the operating disturbance input up to the start of th«; 

calibration at t = t   ,  as described in Section 4.3.    From experiet je, 

the repeatability effect is usually the major portion of the error budget. 

It should be noted that the mean value of the Euler angles represents 

the initial alignment error of the platform with respect to (east,  north, 

up); this corresponds to the (x  ,  y   ,  z   ) platform axes, which,  in turn, 

correspond to the {a,   \,  |i) Euler angles.     The Euler angle standard 

deviation,  in conjunction witn the disturbance process deviation,  to be 

given later,   represents the uncertainty associated with the platform 

stabilization loop. 

Table 5.4 contains a list of the standard deviations for the 

zero mean,  gaussian white,   disturbance process w(tl of Eq.   (4.8) and 

the zero mean,  gaussian white,   measurement noise sequence m(t   ) of 
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Eq.  (4. 14).     From U-sf experirnc »•,   a good approximation of the 

magnitude oi the operating ratulom anccrUUnty In •ensor parameters 

is   10 percent of the rrpeatabilily uncertainty.    Therefore,   the values 

of (rw. through 0^14 are 10 percent of the associated ax. given in 

Table S.2.    The deviations associated wilh the Euler angle distur- 

bances (wjc thru w17) were set equal to the initial state deviation 

values (^x 1 CL thru(rxi7),   since they are both associated with the 

stabilization loop uncertainty.     The Carousel VB error budget distur- 

bance represents the measured uncertainty over a 24- to 48-hour 

continuous test program.     The assumption made for the simulation 

was that the disturbance represents the uncertainty over the cali- 

bration test time,  which is established by the length of time the 

command torquing is applied.     The prespecified command torque 

profile time was 3 hours and 3'* minutes or  13, 140 seconds.    Since 

the measurements were generated at discrete Lime points,  t   ,  the 

disturbance added each At n easurc ment  cycle was obtained by scaling 

the total disturbance standard deviation by 

W4 ACT, i  :   1.2,..., 17 (5.7) 

where 

cr!... - is the standard deviation of the disturbance added 
1 each measurement cycle 

k ■  At/i3140 

Wi is the total  rlisturbam <• deviation ana are the values 
listed in Table 5 . 4 
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Equation (5.7) holds,  since; w(t) is gaussian v/hite and therefore time 

independenl .    Iiulcpendrru «• impli.-s lli.it  (lu- sum of llw variaru<s of 

each measurement cycle equals Ihclolal disturbance variance.    The 

number of measurement cycles is  13140/At or  1/k.     Therefore, 

l»W|) 
w i i i 

(«- terms) (5.8) 

and Eq. (5.7) follows.    The equations of the first 14 sensor para- 

meters are in discrete form in the measurement simulation and are 

represented by the following example of the first parameter D™.. 

D_.(t i    r)„v(t   .) + w;(t ) F X   n FX    n- 1 In 

H      1,2,3 13141 
(5.9) 

where w'. (t   ) - is the scaled disturbance. 
I   n 

For the Euler angles,   the disturbance is added after the dynamic 

equations of Eq.   (5.4) are integrated.    For example, 

n n 1 r>   n [5. 10) 

where 

a'it ) * Mt    .) + n n- 1 

ä   =   f 
15 [Reference Eq.  (5.4)] 
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w'. c(t   ) - is the scaled disturbance 
lb   n 

The measurniuMit  noise is based on the fact  (bat  the output of 

the accelerometers is a series ot Av pulses that are counted by the 

platform computer over each measurement cycle.     The pulse weight 

for the Carousel  VB is  0.002569 ft/sec/pulse.    Converting this value 

to local gravity units gives a poise weight of 80. 28 ug-sec/pulse, 

where g      32. 124 ft/sec   .     The total Av for a measurement cycle will 

be some integral number of pulses phis some residual value of 

velocity.    If the residual value is greater than  1/2 of a pulse (i.e., 

greater (ban 40. 14 |jig-sec),   then another pulse will be generated. 

If the  residual is less than 40, 14 pg-sec,   then no pulse will be added. 

Therefore,  the error in Av will be somewhere in the range of 0 to 

40, 14 pg-sec.    The assumption is that the maximum error of 40,14 

pg-sec is a 3-sigma value; hence,   a  1-sigma deviation  for each 

measurement cycle would be  13 ug-sec,   which is the value shown in 

Table 5.4.    Not« that,  since the uncertainty in Av occun each cycle, 

there is no scaling of the measurement noise.     The discrete form of 

the measurement equation used In the measurement simulation is 

Av(t   ) ^ Av'(t   M m(t  ) —   n —      n       —   n (5. 11) 

where 

r*» .v' (t   )      / hdt —      n        / — 
n- 1 
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h - is defined by Eq.  (5.5) 

We now see that the units givt-n in Tabie 5.4 are compatible with the 

measurement simulation discrete equations. 

After some preliminary runs of the simulation,   a measurement 

cycle of At - 1.0 second was selected in conjunction with an integration 

step-size of 0. 25 second.    The method of integrating the state and 

measurement dynamics was 4th-order Runge-Kutta.    It was found 

that increasing At degraded the  Euler angle estimates,   and decreasing 

it showed little improvement compared to the increase in measure- 

.4 
ment processing.     Rased on a nomin il platform rate of 4.7 X  10 

rad/sec (see Section B. 1  of Appendix  B) implies that measurements 

were taken every 1,62 arc-minutes of platform angle. 

Figure 5. 1  contains a flow diagram of the measurement simu- 

lation program.     Block 1A sets up the initial state vector x(t   ) for 

the measurement simulation using the values of Table 5.2.    The filter 

initial conditions broi ght in at Connector 3 are covered in the next 

section.     The do-loop to Statement 499,  located at the end of the flow 

diagram,  is the major simulation loop that establishes the number of 

measurements N the filter will process.    The first measurement 

occurs at timet.,  where << - t     - At ^ 1. 0 second, implying that zero 

measurements will be processed when M -  1 and  13, 140 will be 

processed when M = 13,141.    Therefore, the maximum value of M 

permits the filter to process measurements over the entire torque 

profile time of 1 3, 140 seconds.     The results will show that filter 

convergence was occurring around 6200 cycles.     The command torque 

generation block is given in detail in Figure 5.2.    Initially, the 
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(START ) 

BLOCK IA 

SET UP INITIAL 
CONDITIONS FOR 
MEASUREMENT 
DATA SIMULATION 

N = I^M^Dg 499 

I 

® 
GENERATE 
COMMAND 
TORQUE 
PROFILE 

BLOCK 2 

GENERATE 
DISTURBANCE 
AND 
MEASUREMENT 
NOISE 

'    BLOCK 3 

FORMULATE 
SENSOR 
PARAMETER 
EQUATIONS 

i      1, J     00 10 

'    BLOCK 4 

INTEGRATE 
STATE DYNAMICS 

I    BLOCK 5 

INTEGRATE 
MEASUREMENT 
DYNAMICS 

1 
INPUT FILTER 
INITIAL 
CONDITIONS 

PRINT OUT 
OF BOUNDS 
MESSAGE 

(   STOP   ) 

BLOCK 6 

FORMULATE 
EUUER AMGLE 
AND     .W 
MEASUREMENT 
EQUATIONS 

CHECK FOR ß 
WITHIN BOUNDS 

■ ß - 85° 

YES NO r 
J* ß *  -85" 
YES    j    NO 

PRINT OUT 
OF BOUNDi 
MESSAGE 

TO FILTER 
ALGORITHM G> 

!   INPUT 4v 
(  TO FILTER G> 

T   STOP   ) RETURN FROM 
FILTER ^ 

(4'>9] 

(   STOP^) 

INTECKATiON STEP  SIZE  - AL 

1  < M   (ilM . I 

Figure  5,1.     F1O\A  .diagram of Mfasurcnu-nl Simulation Program 
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I OmmMld torque profile consisted of a sequence of maneuvers that 

placed each axis of the platform either vertically up or down,  so that 

the maximum  1-g acceleration would he applied to each sensor.     The 

torquing sequence required  13, 140 seconds to complete the total 

profile.    Since the filter was converging in less than one-half the 

torque profile time, the profile was modified to see the effect of 

applying a step-type torque program prior to filter convergence. 

Figure 5.2 shows the final form of the torque program.    It should be 

understooc: that  no attempt was made to optimize the torque program 

with  respect to filter performance.    Optimization of the torque pro- 

file will be discussed in Section 7 and is recommended for future 

study.    Maximum command torquing of platforms r   ages  from 6 to 

10 eru (earth-rate-units),  since the basic use is to provide precise 

torquing during gyrocompass alignment procedures.    In the case of 

the Carousel VB,   the maximum command torque rate is 6 eru. 

Neglecting platform motion due to error drift and earth rate input, 

the first loop (N S 2600 with At      1) applies 6 eru along the negative 

x     and y    axes [note the sign convention of E'q.   (5.2)] ,   which  driv«. | 

the platform from the initial («ast ,  north,  up) alignment to an 

orientation where the z    axis is horizontal,  the x    a;cis is 45 ciet; 
P P 

above the horizontal, and the y    axis is 45 deg below the horizontal. 

The second loop,   2600 < N S 4400,  applies 6 eru along the positive 

Zp axis to drive the y    ax^s to a position of vertically down.     Thi- 

remaining loops maintain 6 eru along the positive z     axis and step 

1 eru of torque rate into both the negative x    and y    a\e,s every 100 

cycles,   until a maximum of 6 eru is applied.     The maxiinum torquing 
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along the three axes is maintained for the remaining measurement 

cycles. 

Block  2 generates ^vlt) ami mjl) using the values in Table 5.4. 

Block 3 formulates the sensor parameter equations represented by 

Eq.   (5.9).     Blocks 4 and 5 arc 4th-order Runge-Kutta integration of 

Eqs.   (5.4) and (5.5),   respectively.    As mentioned previously,  the 

integration step-size was  0. Z5 second,   implying that J  = 4 in the 

integration do-loop.    Block 6 formulates the Euler angle and Av 

equations represented by Eqs.   (5.10) and (5.11),   respectively.    The 

check for 3 within bounds  stops the simulation if P is approaching the 

singularity condition.    The filter is first entered at Connector  1.    The 

Av measurements arc input to the filter algorithm at Connector 2. 

The return from the filter for the next measurement data cycle is 

accomplished at Connector 4.    Statement 499 completes the major 

do-loop cycle.    The iterations are complete when N equals the preset 

M value. 

5.3      FILTER ALGORITHM 

A flow diagram of the filter algorithm is contained in Figure 5.3, 

The filter equations of Section 4 are reformulated into a function of 

the measurement cycle variable N; where the Nth cycle occurs at 

time t   ,  the N-lst cycle occurs at time t      . and t  -t      ■   - At  - 1 n' 1 n-1 n    n- 1 

second. 

Define 

x(N-l)=x(t     .It     .) (17 X 1) filtered stat." vector at time t     , n- 1'  n- 1 n- 1 

x(N)  = x(t   It   ) (17 x  1) filtered state vector at time t n i   n n 
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BLOCK I B 
SET UP INITIAL 
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FOR FILTER 
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r~ 1   BLOCK 7 
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AND H(N) AT 
x(N-1) AND x*(N) 
RESPECTIVELY 
USING ANALYTIC 
PARTIALS 
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I BLOCK 10 

COMPUTE 0(N, N-l) 
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COMPUTE A(NI FROM 
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II BLOCK 12 
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COMPUTE FILTERED 
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RETURN TO 
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Figure 5. 3,    Flow Diagram of Filter Algorithm 
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x'dM)     x(t   If    .) »17     I) predict««! skate vector n '  n- 1 ' 

Av(N) -  (3x1) measurrmonl ciala v<;ct(»r from nieasuremenl 
simulation program 

Av(N) -  (3X1) predicted measurement vector 

A(N) - (17 x 3) Kaiman gain matrix 

F(N-l)  ■ F[x(t     .It     .)]  (17 >' 17) matrix of state dynamic 
n- 1 '  n- I .•   i partials 

H(N) = H[x(t   It     -)]  (3 X 17) matrix of measurement dynamic n' n-1 .. • partials 

*(N, N-l) ■ *[tn,tn_1; x(tn_1 |tn_1)]   (17 X 17) state transition 
matrix 

HN, N-l)^r(t   ,t     .; x(t     Jt     .)]   (17 X 17) disturbance n    n- l n-1 '   n-1 .,. transition matrix 

P(N- 1) - P(t     .It     .)(17 X 17) filtering error co variance matrix n - i'  n - i ,.        , at time t n-l 

P(N) ■ P(t   (t   ) (17 x 17) filtering error covarianco matrix at 
time t n 

P(N) = P(t   |t     j) (17 x 17) prediction error covariance matrix 

Q(N-l) - given (17 X 17) disturbance covariance matrix 

R-   (N) -  given (3X3) measurement error covariance matrix 

XQ - given mean value initial state vector (17 X 1) 

Po " given initial state covariance matrix (17 X 17) 

Block 1 B of Figure 5.3 establishes the initial conditions for the 

filter.    The initial filtered estimate is x(0) = x0.    Since we assume 

that we do not know the mean vatue of the initial state vector, x0 

represents our "best guess".    How far off the "best guess" can be 

from the true mean value (given in Table 5.2) and still have the filter 

converge to its steady-state condition,  indicates the stability of the 

calibration filtering process with respect to the initial state condition. 
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A number of values of x0 were used in the simulation and are given in 

the next section.     The initial value of the filtering error covariance 

matrix is P(0) E P0.    P0 is the initial state covariance matrix defined 

in Eq.  (4.8).     Again we assume we do not know P0.     Examining Eq. 

(4.52) shows that,   since Q is usually much smaller than P,  P is the 

predominate factor in determining the initial gain of the filter.    If 

P(0) is too large,  then the gain level is placing too much weight on the 

initial "poor" estimates.     This causes the filler to operate inefficiently. 

If P(0) is too small and the initial state uncertainty is large,  then there 

is insufficient gain to make the mcessary corrections which can cause 

the filter to diverge,   since the linearization is  no longer valid.    In the 

case of Q,   Eq.   (4.52) shows that,  when the  filter is near convergence 

and, therelore,  P is close to zero (since the Kaiman tilter is a 

minimum variance filter),  Q becomes the predominate factor in 

determining the filter gain.    If Q is too small,  then the gain is essen- 

tially zero, and this,   in effect,  decouples the filtered estimate! from 

the measurement data,  as can be seen from  Figure 4.3,  when 

A(t )     O.    if Q is too large, then the uncertainty level of the iteady« 

stale filtered estimates will be too high.    The easiest  initi?!  factor 

to determine is  R   (1),   since it is directly related to the acceleromeU r 

output uncertainty. 

A common practice in applying a  filtrr is to assume Pi'M.   Q(0^, 

and R  (I) are diagonal matrices,  because of the difficulty m guess; «.g 

initial off-diagonal covariance elements.    The  second assumption is 

that Q and R    are stationary.    In other words, 
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Q(N-l) s Q(0) 

R"(N) E R'(1) 
for all N > 1 (5. 12) 

Some preliminary simulations were performed to establish 

initial values for P, Q, and R    based on the general filter perform- 

ance.    The value of FÜO) selected was a diagonal matrix whose 

elements are 

p..  ■ la 
oi 

I = 1.2 17 (5.13) 

where 

(rx      - are given in Table 5.2 

The value of Q(0) selected was a diagonal matrix whose el ements are 

%i =2*' 
Wi i ■ 1.2,..., 17 

wh ere 

(5.14) 

<rWi - are given in Table 5.4 

And,  finally,  the elements of R   (1) ar« 

"j = '«J j ■ 1.2,3 (5.15) 
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where 

(rni   - are given in Table 5.4 

No attempt was made to optimize filter performance by varying 

P(0), Q(0),  and R   (1).     This  is also recommended for future study. 

In  Blocks 7 and 8 of Figure 5. "J ,  4th-order Runge-Kutta 

integration was used with a step-size of 0.25 second.     The integrals 

for x"(N) and Av(N) are both from Eq.  (4.5 1). 

x   (N)   ■ x(N-l)  + / l|x(t |(n_1jjdt (5.16) 

'n-l 

v(N) = I h[i(t|tn_1)]dt (5. 17) 

Note that, in Eq. (5. 16), there are only three elements of f thai 

require integration. The elements of fare defined in Eq. (5.4). 

Since the first  14 elements of f an« zero, 

x. (N) E   i.(N) i      1,2, .... 14 (5. 18) 

In other words,  the filtered estimates of the first   1 ;  states are 

identically equal to their predicted estimates.    Therefor*-,  in Eq. 

(5.2),  which defines the platform rates lor  Eq.   i5.4),  the first 14 

states are evaluated at their filtered estimates.    The Euier angle 

states are the only variables in  Eq.  (5. 16) that are integrated forward 
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in time.    Since the predicted states x   (N) are obtained from Eq. 

(5. 16),   Eq.  (5. 17) is simplified,  since the h function is now a constant 

function over the integration step-size interval and is obtained by 

evaluating the elements of h [reference Eq.   (5.5)]   at the predicted 

state values obtained from Eq (5. 16).    Therefore,   Blocks 7 and 8 are 

integrated simultaneously. 

Block 9A is simply an evaluation of the partials of F(N- 1) and 

H(N) at x(N-l) and x   (N) respectively.    The analytic partials are 

contained in Section C. 1 of Appendix C.    Block 9B is a standard 

numerical partial subroutine.    The elements of f and h are evaluated 

at x(N-l) and x  (N),   respectively, which establishes the nominal 

value of the f and h elements.    The value of each state is varied by 

some specified increment and the perturbation of the f and h elements 

about their nominal values is numerically equivalent to the value of 

the partial of that element with respect to the incremented state. 

Since F{N-1) is not an explicit function of tinie, the power series 

solution of Eq.  (4.24) can be used to obtain *.    Likewise, Fcan be 

obtained from its power series solution of Eq.   (4. 2^).    A value of 

m = 4 was used in both power series solutions. 

The equations   or Blocks 11,12, and 13 are from Eq.  (4.52). 

Expressing the.n in terms of N gives 

P(N) = *(N, N-1)P(N-1)*T(N,N-1) 

+ r(N,N-l)Q(N-l)r    (N,N-1) (5.19) 

A(N) ■ P(N) HT(N)[H(N) P(N) HT(N) + iTfN)]"1 (5.20) 
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I'lN)     I I -   A(N) IK Nil   I'iN) [i -   A(N) H(N)1 

I   A(N)  R   (N)  A '(N) (5.21) 

x(N) ■ xV(N) + A(N) [AWN) - Av{N)] (5.22) 

Note that Av(N) is input to the filter at Connector 2. 

In order to evaluate the effect of the Av approximation,   an 

alternate filter,   shown in Figure 5.4, was used.    The alternate filter 

contains the Av approximation in the predicted measurement loop. 

The measurements from the simulation were a/eraged over the 

measurement cycle to give an average acceleration value.     This 

permits the ji equation evaluated at x(t   (l      ,),  which is equal to 

AV(t   |t     .), to be compared directly with !he average acceleration 

measurement,   AV(t   ).     Note that,   for this filter,  the R    and H terms 

of Eq.   (4.52) no longer contain the At expressions. 

5.4     SIMULATIOM RESULTS 

There were two basic evaluations of the  1-g simulation per- 

formed.    The first evaluation consisted of four simulation runs to 

determine the filter performance with respect to the initial state 

estimate x(0) - x   .    In each case,  the vector difference between the 

initial guess x    and the true value of the initial  state mean x   ,   given ^ o o    6 

in   ["able 5.2,  was increased.     The second evaluation was a compari- 

son of the results obtained from the basic filter of Figure 4.3 and the 

alternate filter of Figure 5.4.    The comparison was made to show the 

effect of the Av approximation on filter performance. 
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For the first evaluation,   Table 5. 5 shows the value of the initial 

guess x    for each state variable.    Except for the accelerometer scale 

factors,  which were assumed to be 1 X 10   M^g/g for each simulation 

run,  the other 14 elements of Tc    were varied by a   jurcentage of x   . o '      ■ 0 o 

Determining whether the percent variation would be above or below the 

*rue value of x    was done by random choice (i.e.,  a flip of a coin), o 

except for the 100-percent case,  where all values except the scale 

factors were set to zero. 

The results of the 10-percent case are given in Table 5. 6.    x is 

the filtered estimate and x is the true or simulated value of the state 

associated with the 6200th measurement cycle.    The estimation error 

x - x - x is either below or approximately midway in the Carousel VB 

error budget range for every sensor parameter.    The standard devi- 

ation column cr is the square root of the diagonal elements in the 

filtering error covariance matrix P.    From Eqs.   (4.42) and (4.46), 

we see that P is associated with the state perturbation sequence 

6x(t   ).    Therefore,  an expression for the filtering error is n 

6x(t   It  )  i  bt«   ) -  UtH   It  ) (5.23) n '  n n n '  n 

If the perturbations are "small",  lH«n(   from Eqs.   (4.40) and (4.49), 

we see that 

6x(t   ) - x(t   ) - x(t   It       ) n n n'  n- l 

6x(t   It   ) = x(t   h   ) - x(t   It     ,) 
n ' n n '  n n'  n-1 

(5.24) 
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Substituting the equations of Eq.   (5.24) into Eq.   (5.2 3) gives 

6x(t     t   ) =x(t   ) - 5c(t   It  ) = x n ' n n n ' n (5.25) 

Since the mean value of x is identical to the mean value of x, taking 

the expectation of Eq.  (5.25) would show that the filtering error and 

therefore the estimation error sequences have zero means.    Hence, 

a comparison of x (i. e., x - x) with a should give an indication of how 

well the filter is performing with respect to the validity of the lineari- 

zation and the effect of the Av approximation.    A comparison of x and 

IT in Table 5.6 shows that,  except for K^y and K.y» ^e filter appears 

to be performing quite well.    This question still remains,  however: 

what is causing the degradation in the above parameters?    One logical 

conclusion is that either the Av approximation or linearization is 

affecting the estimates of K0Y 
and K.y or possibly the value of Q is 

too high for these terms, as discussed in the last section. 

Most textbooks on estimation theory discuss the value of the 

— 2 
diagonal terms of P (which are equal to <r   ) in assessing the filter 

performance.    If the variance terms are getting smaller with time, 

the estimates will approach an optimal value for a linear application. 

A question arises as to whether the off-diagonal terms contain any 

information in regard to filter performance for linear or nonlinear 

applications.   As mentioned in Section 4, one concern of the calibra- 

tion problem was observability.    Because of this,  the computer 
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printout  of the  P matrix was  restructured  to give the  standard 

deviation along the diagonal and the correlation coefficient p of each 

estimation error state, with respect to every other state,  in the off- 

diagonal terms.    The correlation coefficient p.. between two random 

variables ?c. and x. is [181 

cov(x.x.) 
P; 
g     Vj 

i-JL (5.26) 

where 

cov(x.x.) - is the covariance of x. and x. 1 J i J 

»•M<t.i 

The result of restructuring P  provided an excellent basis for 

studying the interrelationships and influence patterns that exist between 

each estimation error state. 

Table 5.7 gives the accelerometer parameter correlation pattern 

for the three sensors.    The correlation coefficient values are from the 

restructured P matrix for the 6200th measurement cycle.    The reason 

for the degration of K^y and K.v now becomes apparent from the 

value of 0.94 for their correlation coefficient.    In other words, the 

filter is having difficulty distinguishing between them.    Since they are 

both gaussian random variables their associated x. are gaussian,  and 

hence correlation implies dependence [16].    An examination of Eq. 
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(5.5) conrirms this fact.    The relationship of K   v(xK) and K.v(x. .) 

is contained in the h.? equation.    The torque profile is driving the y 
C p 

axis of the platform from horizontal to »90 deg.     As the y    axis gets 

close to -90 deg, the change in the contrihution of the E?^ term (which 

represents the amount of applied g) become! very small,  because of 

the sin af{a a Xjr) term.    This means that the K..,    I  ''   .,  E?, tenn 

"looks like" a single bias term,   in ether words,  a linear combination 

of two constant terms.    )   is not until Of is of such magnitude that  y    is 

close to the horizontal that the change in K^ becomes large enough 

for the filter to distinguish between the two terms,   which implies a 

decrease in p.    Note that ß = xw  is usually less than 20 deg,  so that 

cos ß is close to 1.0.     The following list of o- versus p (for K.,,, and 

K1V) taken from simulation data shows the change in correlation as a 

function of the torque profile. 

0* 

-78* 

-yO* 

106° 

I69e 

223* (43* above horizontall 

0.0033 

0. S2 

0,74 

0.97 

0.94  {N - 6200) 

0.71 

We now see how command torquing can be used to offset the observ 

ability problem. 
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Based on the abovr,   it  is t om luch'H thai the flc^ratlation of tho 

estimates of KnY and K1Y  is rlue to the observability effect,   rather 

than the linearization or Av approximation.    Hence, the results show 

that the linearization is valid and the effect of the Av approximation 

in the gain computation is minimal.    The important point is that the 

off-diagonal terms have provided a new dimension in assessing filter 

performance. 

Table 5.8 contains the results of the 30-percent case.    Since 

the correlation pattern of Table 5.7 also holds in this case, we see 

how the observability effect has again degraded the estimates of K^y 

and K, Y.    It is interesting to note the improvement in the estimates 

of rix    and 4JX. for the 30-percent case compared to the 10-percent 

case. 

Comparing the x results of Tables 5.6 and 5.8, we see that the 

estimates for K|X are essentially the same, but the estimate for K^ 

has improved  x by approximately two-thirds.    The improvement in 

Knv has an effect on ^x->  as shown by h, of Eq.   (5.5),  and therefore 

the estimate of iVx. should improve.    The same holds true for r|x   , 

which is related to D™. and D..,.    The x results show that the esti- FX IX 

mates of Dpy are essentially the same, but the estimate for D.^. 

has improved x by a factor of four.    Equation (5.2) shows that an 

improvement in DTV should improve the estimate of n«   . r IX Ao 

The results of Table 5.8 show,  once again, that the linearization 

is valid and the effect of the Av approximation is minimal.    Even with 

the slight degradation in the estimates of K^y an<^ ^iv'  t^e e8tiniation 
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! 

error of each sensor parameter is below or within the Carousel VB 

error budget.    Component tests are conducted,  in addition to prelimi- 

nary platf- rm checkout tests,  prior to the 1-g calibration, implying 

that knowledge of the sensor paramete"      agnitudes should be within 

30 percent for establishing an initial guess x0.    Therefore, the 30- 

percent case should be quite representative of an actual laboratory 

calibration program.    It should be noted that for both the 30-percent 

and 10-percent cases,  the total filtering time was   slightly over 1 hour 

and 43 minutes.    Platform calibrations being performed for industrial 

and military applications require 24 to 48 hours to obtain sensor para- 

meters.    Keeping in mind that the results given here are based on 

simulated measurement data, the reduction in calibration time still 

appears significant. 

Table 5.9 contains the results of the 60-percent case.    Since we 

know from the last case that the filter converges to within the error 

budget from an initial condition of 30  percent of x0,  our only concern 

here ia that the estimates are at least within 30  percent of x.    Hence, 

instead of the error budget column,  a "% of x" is shown.    We see that 

all the parameters,  except the misalignment angles,   are within 10 

percent.     The angles are within 28   percent.    As indicated by the 

asterisk,   eight of the 14 parameters are within the error budget. 

Notice that the filtering time is only 7 minutes longer than the  10- 

percent and 30-percent cases.    The P variances indicated that the 

filter was still converging at the final cycle. 

The results of the 100-percent case are in Table 5. 10.    The 

filtering time was increased by approximately 17 minutes over the 
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60-percfiit case.     I he results show that nine of the  14 parameters are 

within the error budget  and  four of the last five are very close to the 

error budget.    All parameters are within 23   percent of x.     The impor- 

tant point  about the   100-percent case i» fhai  it truly represents  a 

worst case condition,   since we assume no knowledge of the sensor 

parameters for the initial condition.     The results of the 100-percent 

case indicate that the  1-g calibration problem is quite stable v ith 

respect to the initial  state estimate. 

The second evaluation consists of a single bimulalion  run of the 

alternate  filter of  Figure  '3.4.     All the conditions of the  30-percent 

case of the basic filler were duplicated,   so that  the only difference 

was that the Av approximation was removed from the gain con.putation 

and located in the measurement prediction loop,  as shown in Figure 

5.4.    The results of the alternate filter are shown In  Table  5. I 1 ,   along 

with the  results obtained from the basic filter,  which were extracted 

fron1 Table 5.8.    A cotmiarison of the estimation error values shows 

that the Av approximation in the predicted measurement loop definitely 

degrades filfer performance.     Note that five of the alternate filter 

parameters are within the error budget.    It appeared that there was a 

remote possibility that t'ie alternate filter would converge; nowever, 

the loss of filtering efficiency is apparent.     Note the difference in the 

estimation error for the Euler angles.     The alternate  filter is obviously 

not tracking the platform nearly ab «relJ   it  the basic  filter.     This 

concludes the 1-g simulation results. 

158 



^^^^^^^■Mi 

Table 5. 1 1.    Comparison of Basic and Alternate Filters for 
Av Approximation 

State 
Variable 

xof 
Basic Filter 

0.998 

x of 
Alternate Filter 

25.877 

Units 

DFX meru 

DFY 0.553 8.079 meru 
DFZ -0.235 - 10.311 meru 

DIX 0.058 90.223 meru/g 

DIY 0.665 89.070 meru/g 
DIZ 0.860 110.043 meru/g 

Kox -4.506 -21.171* ^g 
K0Y -68.685 -128.034 Kg 
K0Z -3.001 -7.856* Kg 

K1X -16.57 -54.03* Kg/g 
Kjy -74.09 -155.81 Kg/g 
K1Z -21.98 -18.79* Kg/g 

"»«• 0.244 0.608* arc-sec 

0.852 15. 157 arc-sec 

a -17.70 -634.69 arc-sec 

ß 102.22 9230.82 arc-sec 

V 24.46 1825.49 arc-sec 

N = 6200 cycles Time =  1 hr 43 min 20 sec 

Indicates parameters of Alternate Filter where x is within 
error budget. 
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SECTION 6 

SIMULATION OF A CENTRIFUGE CALIBRATION 

The results of a 10-state simulation of an operating centrilage 

calibration are given in this  section.    The measurement data was gen- 

erated by simulating the platform motion due to error drift, earth-rate 

input,   and a prespecified command-torquing profile for the centrifuge 

operating at the 1 0-g level.    The basic purpose of the centrifuge simu- 

lation is to determine the ability of the filtering algorithm to identify 

and estimate the higher-order error coefficients.     In addition to the 

above,   the program was formulated into three different options to 

permit  an evaluation of the various types of fixed and first-order 

coefficients in combination with the higher-order terms. 

6.1      SIMULATION STATES AND EQUATIONS 

The nine sensor parameters and three Euler angles considered 

for the centrifuge simulation are defined in Table 6. 1.    The first four 

state variab.'es are fixed and first-order error coefficients that are 

combined with the higher-order coefficients in three program options 

to be defined later.     Tiese coefficients were included for two reasons: 

first,  to determine how well the data reduction technique obtains 

estimates of the fixed and first-order coefficients in the centrifuge 

environment; second,   .o determine if an observability problem exists 

between the lower-  aid higher-order coefficients,  which would degrade 

the estimates      State "ariables three through nine are the second- and 

third-order gyro ana accelerometer coefficients.     Note that representa- 

tion of both in-axis anc. cross-axis second-order terms for both sensors 

Preceding page blank 
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has been included along with the accelerometer cubic coefficient.     The 

last three state variables are the Euler angles required for platform 

tracking.    As was the case for the 1-g simulation,  the purpose of the 

centrifuge simulation was to validate the data reduction method. 

Therefore, a sufficient number of states were included to represent 

all the basic types of higher-order coefficients normally determined 

from a physical centrr.fuge test; however, the total number of states 

was limited to keep the complex task of structuring and analyzing the 

filter tractable. 

All the sensor misalignment angles were assumed to be zero and 

the torquer scale factors were assumed to be unity to limit the number 

of states.     For the reasons given in Section 5. 1 of Section 5,  the 

models contained in the state and measurement dynamics of the pre- 

dicted filter loops were assumed identical to those used to generate 

the measurement data,  and the servo error term of Eq.   (2. 33) was 

assumed to be zero. 

The state variables for each of the three program options are 

given in Table 6. 2.    Since only 10 states were evaluated for each 

option,  the first column of Table 6. Z merely shows the location of the 

specified state variables in the 10-element state vector x(t).    In other 

words, for the Basic Option:   x» is the first element of the state 

vector, x. is the secoid element,   and so forth.    All equations in this 

section will be in terms of the state variables of Table 6. 1,    The 

analytic partials,  contained in Section C. 2 of Appendix C,  are in terms 

of the same state variables.    So that there is no confusion,   any time we 

are referring to the subscripted variable x.,  it will be clearly identified 
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in the text material whether we are referring to the state variables of 

Table 6. 1 or to an element of a state vector such as x(t),  x(t),   or x  (t). 

For example, in Section C. 2,  the analytic partials of the state function F 

are evaluated at the filtered estimate x.    Since the analytic partials are 

in terms of the state variables,  Table 6. 2 shows that,   when we evalu- 

ate F for the Basic Option,  we replace the state variable x, in the 

partial equations with the first element of the filtered state vector x. . 

This is shown in Appendix C by the defining equation x^ s x. ,  which 

means replacing state variable x, by the first element of the filtered 

state vector. 

Since the major portion of the platform error drift is due to the 

contribution from the fixed and first-order terms,  those terms that 

were not designated as state variables were added to the simulation as 

constant inputs,   so that the platform drift is representative of the 

actual magnitude expected during a centrifuge calibration.    The input 

constants common to all three options are shown in the first column 

of Table 6. 3,    Note that H^^  rather than Dj^ was arbitrarily chosen to 

represent the mass unbalance term for the Z gyro.    In addition to the 

above,  those state variables not included in a specific program option 

were also set equal to a constant value,   as shown in columns two 

through four of Table 6. 3.    In other words, for the Basic Option,  state 

variables x.  and x- are not used in the filter state vector; therefore, 

they were set equal to the constant values specified in column two. 

Hence,  any time an equation contains the symboled form of the sensor 

parameters (i. e. ,  Dp«,  K0y.,  etc.), the constant values of Table 6. 3 

are used.    For example,  in the expression 
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DFX + X3 aIAX 

x, refers to the stc-te variable of Table 6. 1,  and D_y refers to '.he 

constant input value of Table 6.3. 

To obtain the simulation equations,  we need to identify the charac- 

teristics of the centrifuge coordinate transformations defined in ^ac- 

tion 3.    The first assumption concerning the centrifuge is that we have 

perfect counter-rotation such that the system platform is completely 

isolated from the centrifuge rate.    This implies that the misalignment 

angles and speed variations of both the main and CRP spindles and 

drive systema,   respectively,  are zero.    Second,  we assume that the 

1-pulse-per-revolution station is perfectly aligned with the East. 

Third,  we assume perfect alignment of the centrifuge main arm 

centerline,   CRP X    axis,  and the 1-pulse-per-revolution station. 

Finally,  we assume that the static and dynamic change in centrifuge 

radius from its nominal value is zero. 

The assumptions are not as drastic as they appear.    As dis- 

cussed in Section 3, the spindle misalignments,  drive system varia- 

tions,  and the  arm stretch are ill measurable quantities obtained by 

the various centrifuge systems discussed in Section 3   1.    In the case 

of the alignment of the centrifuge main arm,   1-pulse-per-revolution 

station,   and the CRP axes,  these are also quantities measured during 

the initial platform i.isi^llation and alignment phase,    rience,   all th» 

above quantities a-  ount to deterministic coordinate transformations. 

Since our purpose is to validate the data reduction technique,   nothing 

is gained by complicating the platform rate equations with additional 
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deterministic factors.     Keeping in mind that cur concern in the 

calibration problem is net that the system is isolated from the centri- 

fuge rate,  but that we are able to determine the amount of centrifuge 

rate sensed by the  system,   so that we can account for this rate input 

in the platform rate equations.    The best approach to that problem is 

to use actual centrifuge performance data to determine if the measure- 

ment accuracy of the centrifuge systems is  sufficient,   and,  in some 

instances,   verify that the assumed dynamic centrifuge models and 

coordinate transformations of Section 3 arc valid.     The important 

point is that the above approach is the next logical step to take after 

having validated the data reduction technique with a tractable 

simulation. 

Based on the above assumptiuns,   the following parameters for 

the centrifuge coordinate transformations CAB be defined.    Reference 

Eq.   (3.6),  the misalignments are zero implying that (j> , , = <p      -  0 
A-t,       y ^ 

The  1-pulse-per-revolution station is East,   implying that the astro- 

nomic heading p -  90 dec and therefore 0       -  0 for Eq.   (3. 7). & rppr ■ rzc ^    '       / 

Since the main arm is aligned with the ppr station 0    a Ü; and bu    ■ 0, 

since the centrifuge rate JJ    is constant.     Tlv-refore,   the earth-to- 

cenlnfuge transforrnatioi ,   Eq    (3. 9),   reduces to 

cos w  t sin u   t Ü c c 

sin w  t cos tit t 0 c c (6.1) 
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Reference Eq.   (3. 12),  9      - G      =0,   since the misalignments are 

zero.    Since X    is aligned with X    6    = 0; and 6w    = 0,  since the CRP r * co r        ' 

rate oj   = w    is constant.    Therefore,  the centrifuge to CRP transforma- r        c » e 

tion,  Eq.   (3.14),   reduces to 

cos u  t c 

sin CJ t c 

sin u  t c 

cos u  t 
c (6.2) 

From Eqj.   (6. 1) and (6. 2),  we see that 

Cr CC = 1 (3 x 3) identity matrix c     e ' (6.3) 

Since the arm stretch is zt ro,  ör of Eq.   (3. 16) is zero; this implies 

that the centrifuge radius is equal to the nominal 260-inch value r   . 

Finally,   since the speed variations are zero and w      = w  , co 

Eq.   (3. 17) reduces to 

r       /-re 
i r e    i e (6.4) 

Neglecting for now the variations due to the three program 

options, we obtain a general expression for the platform rate equations 

using the state variables of Table 6. 1 and the commoa input constants 

of Table 6.3. 
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(6.5) 

Combining Eqs.   (3.20),   (6.4),  and (2.33),  with the misalignment 

angles at zero,  gives 

xp 1 3   IX 12 13 

"yp '-  -DFY " DlYalY  " X5(aOY)    " TGY " E22WEC " E
23WES 

% =  -DFZ " DOZaOZ " x6(aIZMdSZ,      TGZ 

- E32WEC - E33WES 

From Eqs.   (3.19) and (2,34),  we obtain a general expression for the 

platform acceleration 

AXa X2 '   X4aIAX + X9(alAX,(aPX) 

AY - KÜY +K1YaIAY +x7(aIAY)' (6.6) 

AZ = K0Z +KlZaIAZ ^g^IAZ* 

We now need to obtain expressions for the applied ac^ele.» ition terms 

of Eqs.   (6.5) and (6.6).    Section H.2 of Appendix B  shows that the con 

tribution of the Group 2 farms of the applied acceleration equation, 

Eq.   (3.25),   can be neglected.    From the centrifuge assumptions ". e 

know that 

AV/rk - Wck --- Wrk -O er ec cr 
(6.7) 
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Combining Eqs.   (6.3) and (6.7),  the applied acceleration equation 

reduces to 

AS   = C8CP i2 WekCeWckRc    + Ge + CrWckWckRC   \     (6.8) is P   r (        le     c    ec   cr c    ec    ec   cr; 

From Eqs.   (3.3),   (6.1),   (3.11),   (6.2),   and (3.25),  the term in the 

brackets   {   }  of Eq.   (6.8) can be reduced to 

/l 
AS   > C8CP;r^ (6.9) is p   r j   2 ' 

r3 

where 

2 
r.  -  -u)  r   (cos UJ t) - Zu   r   (WESHcos w  t) 1 co c co c 

2 
r0 - -Gj  r   (sin w t) - 2w r   (WES)(sin u t) 2 co c c o' c 

r, ^ g + 2w  r   (WEC)(sin w t) 
J CO c 

The expressions for r.,   r   , and r_ can be simplified,   since we know 

the centrifuge angular rate w    at the 10-g level and the nominal radius 

r   .    The components of earth-rate,   WEC and WES,   are defined by 

Eq.   (3.3). 

Given 

w       3.8505054 rad/sec 
c 

r    ■ 260/12 ft o 
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1 
WES  . S.9S990SS2X  lO"5 rad/scc 

WEC 6.1232531 X  10   5rad/Sec 

g - 32.1232531 ft/sec2 =   1  (g-units) 

We convert the constants to g-units and obt am 

r,   ■  -ül(co6 u t) 

ra ■  -Gl{sin u t) 
■ c (6. 10) 

r3 =   LO + G2(sin U t) 

where 

Gl  ■  10.00020568 JI'S 

G2 i  0.0003180S g's 

Now C" is the Euler transformation matrix and C"   is the sensor r p 

transt'ormations defined   >y Eqs.   (3.19) and (3,20).    Therefore, we can 

now solve for the components of applied acceleration. 

aIX S    aIAX     aO/. " ^ 

aIY = alAY ' HZ " AY 

alZ '  aJAZ " AZ 
(6.11) 

aOY      aPX S -AZ 
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where 

AX ■ -G1[E. . (cos w t) + E.-(sin u t)]  + E.,(l.O + G2(3ir u t)] 

AY -- -Gl[E21(co8 y tj + E22(sin w t)J  + E^fl.O + Ü2(sjn u,_t)] 

AZ ■ -Gl[E31(cos ^t) + E32(sin » t)]  f £..(1.0 4 G2(8in M I)] 

E. .(i, j = 1, 2, 3) - are from Eq.  (4.1) with a = x   .,  ß = x     , 

and \ - x.. 

From Eqs.   (0.5) and (6.11) and Table 6.2, we can obtain the 

platform rate equations for the various progiam options. 

BASIC AND OPTION 2 

ux    B 'DFX ' X3(AX) - TGX " Kj^WEC - E13WES 

OPTION   1 

u      = -x.   -  DIV(AX) - TGX - E.,WEC - E<0WES (6.12) 
xp 1 1A 1 c, 13 

FOR  ALL OPTION^. 

M      ■  -DFy -  ;)iy(AY) - BS(AZ)* -  TGY  - P:22WEC  - E23WFS 

m      -- -D        - D       (AX) - x,(AZ)(AY) - TGZ - E.^WEC - E,.WCI 
zp t /-• Us- o 3t 33 

We see that only u       is afected by the prograin options.    With the plat- xp 

form rates defined by Eq.   (6.12),  we can define the state vector equa- 

tion directly from Eq.  (4.8). 
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x  a f(x,l) + wit) (6.13) 

whe re 

x and w - are  10-elenient vectors constructefi according to 

the options of Table b.Z 

_£(x,t) - is a  lü-elenu-nt vector-valued fiUiCtioo constructed 

according to the selected option. 

The only difference  between L'q.   (6. 13) and Eq.   (4.8) is the dimen- 

sionality ol tht; equation.     Wo know from Section 4 thai the first  seven 

elements oi ^_ arc zero,   and the last three elrmenis contain the 

dynamics ol the system platform  rates. 

in - (w     cos x, . i u     sin x . . >/cos x, , 
I xp IZ        zp 12 11 

l ,  -   w     cos x.      ■   LL-     sn.  x. ., (6. 14) 
9 /.p 12 Xp I   i 

n - {u    cos x. .sin x , .   ♦• w     sin x, .sin R , , l/cos x. ,   + w 0 xp 1 i 11 yp I .' II If yp 

The  Mjuation for u>     in hq.  (6. I4J it based ^ri »he program option as 

shown in Eq. (6.12).   The    tansti. al description oi £q.  (6.13) is 

identical to Eq.   {4. *i wiih the dimensionahly adju   ted irom 63 to 10. 

The measurement equation tot the \ a > i   tlS program OptiOOf IJ 

obtained lroniE(|S.   (6.6) and  (6. 1 1 ) an i Table •'... 
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BASIC AKD OPTION 1 

hl = K0X + x4(tn)tAX(tn,J  " XV(tn) [AX(tn > # AZK)] 

OPTION  2 

hl ' X2Un, + KlXlAX(tn,J  ' X9(tn^AX(tn, * AZ(tn,j        (6-15) 

FOR ALL OPTIONS 

h2    KOY + KIYIAY^,J +x7(tn)[Ay(tn)J' 

VKOZ+KlzfAZ(tn)J  fV«^AZ<1«^ 
3 

We see that only h.  is affected by the program options.    The measure- 

ment equation is iceniical to Eq.  (4. 14) with h[x(t   ),  t   j defintd by 

Eq,  (6.15) and the selected program option. 

6.2     MEASUREMENT SIMULATION 

Except for the elements of the state and measurement equations, 

the measurement simulation is identical to the 1-g simulation develop- 

ment described in Section 5.2 of Section 5.    Table 6.4 contains a list 

of the means and standard deviations for the state variables.    These 

values were used to construct the 10-element initial state vector x{t   ), 

based on the specified program option.    As was the case in Section 5, 

the values are based on data from the Carousel VB system. 

Table 6. 5 contains a list of the standard deviations for the zero- 

mean,  gaussian white disturbance process w(t) and the zero-mean, 
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guassian white, measurement noise sequence m(t   ).    As was the case —   n 

in Section 5,  the standard deviations for the sensor parameter dis- 

turbances are 10 percent of those Jisted in Table 6.4.    Also,   since the 

same torque profile was used, the disturbance added each At measure- 

ment cycle is given by Eq.   (5.7) with i  -  1,^,   ...   ,   10.    The equations 

of the sensor parameters,  Euler angles,   and measurements are repre- 

sented by Eqs.   (5.9),   (5.10),   and (5.11),   respectively,  with the state 

and measurement dynamic equations given L| Eqs.  (6,14) and (6.15). 

A measurement cycle of At s  0.04 second was used for the centri- 

fuge simulation.    This n easurement cycle is identical to the opera- 

tional measurement cycle used for the Carousel VB Inertial Measure- 

ment Unit.    The method of integrating the state and measurement 

dynamics was 4th-order Runge-Kutta with a step-size of 0.01   second. 

Based on a nominal platform rate of 5.2 X 10'    rad/sec (see Section B.- 

of Appendix B) it is implied that measurements were taken every 0,07 

arc-minutes of platform angle.    Based on a centrifuge rate of 3.85 

rad/sec,  it is implied that measurements were taken every Ö.8 deg 

of centrifuge angle.    Figure  5. 1  also represents ihe flow diagram 

for the centrifuge measurement simulation program with   he state and 

measurement dynamic of Eqs,   (6. 14) and (6, 15).    Sirce At ■ 0.04  sec- 

ond,   it is implied that the maximum number of measurements over the 

torque profile would be ,'i28,r)()0.     Fortunately,   lila filter converged 

in less than  15,000 cycles,   so that it was no(  necessary to process 

all of these measuremerts. 
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6.3      FILTER ALGORITHM 

Except for the elements of the state and measurement dynamic 

equations, the filter algorithm is identical to the 1-g simulation devel- 

opment given in Section 5.3 of Section 5.    Since the state dynamic equa- 

tion is an explicit function of time,  it is implied that F and * are func- 

tions of time; therefore, the matrix differencial equation,  Eq.   (4.22), 

should be used to obtain a solution of 4.   As discussed in Section 4.4 

of Section 4, only the elements of the last three rows of 9 require a 

solution via Eq.  (4.22).    This implies a total of 30 differential equa- 

tions.    In the case of F, the adjoint matrix differential equation, 

Eq.  (4.27),  requires the integration of 60 differential equations to 

obtain 9 from tn back to tn.i,   as discussed in Section 4; then 6n addi- 

tional integrations are required to obtain C from Eq.  (4.26/,  for a 

total of 120 integrations.    This is a formidable task just to transition 

the "initial guess" of Q(0) forward in time.   Since Q(0) is an adjustable 

initial condition, it was decided to consider F constant  over  the 

0.04 second measurement cycle and obtain F by the power series 

approximation of Eq.   (4.29) with F evaluated at t = tn. 

Another approach would be to consider F constant for the * 

computation as wel:,   then use the power series approximation of 

Eq.  (4.24), with F evaluated at t-tn,  to obtain 4.    An evaluation of 

approximating both * and F by the power series method is important, 

since,  for the general calibration problem containing 63 states,  we 

are dealing with 189 integrations for 4 and 3969 integrations for F. 

Therefore,  the only significant difference in Figure 5.3 for the 
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centrifuge simulation is that Block 10 contained two options for 

obtaining * and 1 .    One option obtained both by the power series 

method with m= 5.    The second option obtained * by a 4th-order 

Runge-Kutta integration of 30 differential equations using a step-size 

of 0.01  second,  and then used the power series approximation to 

obtain F. 

The partial derivative matrices of f* and hi p.re contained in Section 

(',. 1 of Appendix C.     The ;onstrui f ion of their ele-nenls is based on the 

specified program option.    As was the case for Section 5, P(0) was 

assumed a diagonal matrix; Q(0) and R (t) were assumed diagonal 

and stationary.    The scaling for P(0) and Q(0) was identical to 

Eqs.   (5. t3) and (5. 14),   respectively,  with i -  1, 2, ... , 10.    The 

scaling for R'^l) was identical to Eq.   (5.15).    All the procedures and 

equations for x''"{N),   Av(N), A(N),  and x{N) are identical to those of 

Section 5 with At  ■ 0.04 second,  an integration step-size of 0.01  sec- 

ond,  the dimensionality educed from 1 7 to 10,  and the state and 

measurement dynamics defined by Eqs.   (6. 14) and (6. 15). 

6.4      SIMULATION RESULTS 

Before discussing the detailed final results of the centrifuge 

simulation,  the results obtained from some preliminary runs will be 

given to show how some of the physical aspects of the problem and 

the correlation data obtained from the simulations were used to 

improve the estimates of the centrifuge calibrations.    From Table 6.4, 

we see that the initial values of a and y are a few minutes of arc.    To 

simplify the notation,  we will refer to this initial condition as the 

a - y - 0 condition. 
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Table 6.6 shows the results of three simulation runs where the 

only difference was the initial values assigned to a and Y.    For the 

a - \ - 0 case, we see that the estimation error x (i.e., x - x) for all 

the sensor coefficients except K-j^ appear to be quite small.   In the 
■a 

case of K, y we are attempting to e stimate a true vahi? of x = 3. 554 pg/g 

and x= 1.667 pg/g   .    Obviously, the estimate is very poor.    Note, 

however,  that K^y is a coefficient associated with the Z accelerometer, 

and the Z platform axis is vertically up at the start of the calibration. 

Since the filtering time is only 5 minutes,   wo set from the true values 

of a,  ß,  and V that the Z axis has only moved approximately 9 deg from 

the vertical.    This means that the Z accelerometer has sensed only the 

local gravity value of 1-g,  compared to the other platform axes which 

have sensed a peak.-to-peak acceleration of 20 g's.   The K-z coefficient 

information is essentially "buried" in the noise.    To correct this physi- 

cal situation,  the initial condition of a was changed to -45 deg, which 

places the Z axis 45 deg above the horizontal and permits the Z acceler- 

ometer to sense a component of centrifuge acceleration.    The results 

of this simulation are in the or = -45   V = 0 column.   We can now see the 

significant improvement in the K,7  estimation error,  from  1.667 to 

0.017 pg/g   .    An interesting comparison can also be made with the 

K_y correlation pattern for the two cases.    The following correlation 

pattern gives the sensor parameter that K^y is correlated with and 

the amount of correlation, p,   for the two cases 
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Sensor Parameter a - 0 Correlation = -45 Correlation 

D. 

a 

\ 

IX 
0.45 0.063 

0.50 0.23 

0.40 0.026 

The correlation pattern cefinitely shows the estimates oi K^ should 

be better with the A axis 45 deg above the horizontal.    Once again we 

see a relationship between the correlation pattern, provided by the 

off-diagonal P matrix terms, and the torque profile via platform 

orientation. 

Comparing the a     0 to a -   -45 \ *  0 eise,   we see that another 

problem has developed.     The estimate for Dtv has degraded signifi- 

cantly.    A review of the !-g simulation results showed that the corre- 

lation pattern (especially with a) and x improved tremendously when 

y - -45 deg.  The results of the a ~  -45  \ -  -45 column verify the 1-g 

analysis and show tha'   i significant irnprovemenl in the D.y. estimate 

has occurred,  along with a further improvement in the K^,, estimate. 

The slight degradation of K.^ is not significant,   since approximately 

260 seconds later in the • ■  -45   Y ■  -4 5 run, x for K. v drops to 

-0.78 p.g/g and stays there; in other words,   it takes a little longer 

to converge the K. „ estimate.   Once again the correlation pattern of 

DT5, for all three cases  shows the relative degradation or improvement 

of the D.Y estimate with respect to the plattorm orientation. 
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Sensor Parameter 

K 2Y 

a = 0 a ■  -45 a = -45 
\ = 0 Y     0 Y = -45 

Correlation Correlation Correlation 

0.076 0.54 0.061 

0.63 0.56 0.23 

Based on the above,   the two program options ihat contain DTY,   Basic 

and Option 2,  were run with the initial values of u and Y set to -45 deg. 

In the case of Option  1, only the initial valuo of a was set to -45 deg to 

permit recovery of the k-... term. 

Nothing has been said thus far about the initial state estimate 

x"    - x(0) for the centrifuge  simulations.    The initial estimates for all 

the higher-ordor coeffic .ents,  state variables x    through x   ,  were 

always set equal to zero.    Since we assume we know nothing about 

these coefficients,   zero is the logical choice.    For the fixed and first- 

order coefficients,   staU' variables x    through x.,   the initial estimate 

of the scale factor was always set equal to 1.0 X 10    jig/g,  and the 

other three coefficients were varied by either  10 percent or 30 percent 

of the  respective x0.  (i - 1,2,3) contained in Table 6.4.    In the case 

of the  Euler angles,  the 10-percent or 30-percent variations of x0. 

(i ■ 10, 11, 12) were obviously applied about the new initial values of -45 

deg,   rather than x   ,   for those angles with the 45-deg offset.    The differ- 

ence in the results from the  10-percent and "^O-percent simulations is so 

insignificant that only the 30-percent results for the three program 
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options will be presented.    Selection of the 30-percent case is rather 

conservative,  since the initial estimates for the fixed and first-order 

coefficients will normally be provided by the precentrifuge 1-g calibra- 

tion; and as was shewn in Section 5,  even the 100-percent case con- 

verged to within 30 percent.   A worst case run was also made for the 

centrifuge simulation,  where all the coefficient initial estimates except 

the scale factor and offset angles {a - y =  -45 deg) were set to zero. 

As discussed in the last section, there were two options avail- 

able for computing * and F.    The option that obtained both by the -^wer 

series approximation is referred to as TOPT ■ 0,  where TOPT stands 

for transition option.    The option that obtained * by integration and T 

by the power series approximation will be referred to as TOPT =  1. 

Table 6.7 contains a comparison of the results of the two transition 

options.    Since the differences are so small,  all the digits available 

from the computer printout are provided to permit a complete compari- 

son.    The results show that assuming F to be constant over the 

0.04-second measurement interval and computing * and T from the 

power series approximation with m = 5 is a valid approximation. 

Therefore,   TOPT = 0 was used for all the remaining simulation runs. 

This result is encouraging,  since the 63-state general calibration pro- 

gram becomes much simpler if all the integrations associated with 4 

and F can be eliminated.   It should be noted that the approximation was 

probably valid because of the short measurement cycle time; however, 

for most missile applications, the measurement cycle time ranges 

from 0.02 to 0.05 second in order to meet operational accuracy 

requirements. 
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Block 9 of Figure 5.3 shows that two options were available for 

computing the F and H partials for the filter.    Table 6.8 shows the 

results of two simulation runs, whose only difference was that one was 

based on the analytic partials of Appendix C and the other was based 

on the numerical partial routine.    It should be understood that no effort 

was made to improve the results of the routine,  such as adjusting the 

incremental perturbation levels,   since the basic purpose of the numeri- 

cal partials was to provide t basis for comparison and checkout of the 

hand calculated analytic partials.    The results of the numerical partials 

compare quite well with the analytic results,  especially to one who had 

the "pleasure" of hand calculating the 162 partials of Appendix C.  With 

further refinements on the numerical partial routine, a major simpli- 

fication of the 63-state calibration program could be achieved using 

numerical partials. 

The results of the 30-percent case lor the Basic Option,  Option i, 

and Option 2 are contained in Tables 6.9,   6.10, and 6.11, respectively. 

Except for K-ipx in two program options,  all the values oi the estima- 

tion error,  x,  are well within the error budget.    The error budget 

values for K^y»  ^-3/»  an^ ^ipv were obtained from the Central Iner- 

tial Guidance Test Facility at Holloman AFB,   since no values were 

defined for the Carousel VB error budget.    The values for the above 

accelerometer error coefficients are nominal error values that are 

representative of the quality of accelerometer used on the Carousel VB 

platform.   In the case of K.py, we see that the largest value of x was 

obtained with Option 1,  where the initial offset was a ■ -45 deg.    For 
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the Basic Option and Option 2, the initial offset was a = y = -4 5 deg. 

We see that the value of x is improved for the Basic Option and within 

the error budget for Option 2.    Comparing the K.pX estimation error 

values for the two transition options of Table 6.7, we see that the 

approximation of * is not responsible for the degradation of the K.p,. 

estimate.    Table 6.6 shews significant differences in the Krpv value 

of x for three different initial offset cases of the Basic Option.    The 

significant improvement of KTp„ for the a - -45   v = 0 case appears 

to conflict with the results of the 30-percent case, where the worst 

value of x for Kjp., was obtained with Option 1,  where a - -45 deg 

and \ - 0 deg.    The a - -45   y - -45 and a • -45   ^0 cases were 

both run lor a total filtering time of 10 minutes.    The results at the 

10-minute point were identical to those shown in Tables 6.9 and 6. 10 

~ 2 for the Basic Option and Option 1  (i.e.,  x = Ü. 11720 ixg/g    and 

x = 0. 18937 M-g/g   »   respectively).    The interesting point is that at the 

5-minute point, for the a -  -45   v = 0 case oi Table 6. 6,  the correla- 

tion coefficients of K D     with D     ,   K v,   K, ,,   n,  and ß were 2 to 3 

orders of magnitude lower than those values for the a = 0   \ = 0 and 

a - -45    Y ■ -^5 cases at the 5 minute point.    Also,  the correlation 

pattern was improved for the 30-percent Option 2 case,   as compared 

to the 30-percent Basic Option, with respect to K.y and K<y» 

respectively.    It now becomes apparent that K.py is extremely sensi- 

tive to the platform orientation and to the other accelerometer param- 

eters along the x axis; in other words, the estimate is improved when 

coupled with a bias term (KQ^), then with a scale factor term (Klx.). 
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Now,  since Krpy is a cross-axis term, it is not surprising that it is 

highly sensitive to the platform orientation.   Also,  it is not surprising 

that the correlation pattern is improved when compared to a constant 

bias term, which should be easily distinguished from a second-order 

term when sinusoidal acceleration is applied.    Therefore, the conclu- 

sion is that a more favorable orientation that decouples K.p.. from the 

other sensor parameters is required for a good estimate of the K.py 

coefficient. 

The results of Cxe worst or i00-percent case using the Basic 

Option are contained in Table 6.12.    Considering that the filtering 

time was only increased by 5 minutes over the 30-percent case, the 

results are truly incredible.    Four of seven coefficients are already 

within the error budget,  and the remaining three coefficients are 

extremely close. 

Comparing the results of x or ff in Tables 6. 9 through 6. 12, we 

see that the relative difference between x and <r is larger for the 

centrifuge simulation than for the 1-g simulation.   In the 1-g simula- 

tion,  the values of x,  which represent the state perturbations, were 

about the same magnitude or smaller than the standard deviations, a, 

of the filtering error.    Table 6. 13 gives a comparison of the  1-g and 

centrifuge simulation filter performance for those fixed and first- 

order coefficients common to both simulations.   In order to have a 

common base for comparison,  the results are compared for an equal 

value of N measurement cycles,  rather than an equal time of filtering. 

In other words, we are comparing the filter performance based on the 
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results after processing the same number of me isurements:    6200 in 

the 30-percent case and 7600 in the 100-percent case.    The results of 

Table 6. 13 show that even though the relative difference between x and 

a is larger for the centrifuge simulation,  the values of x (state 

perturbations) for the centrifuge simulation are smaller than those of 

l-g simulation in the majority of cases.    Comparing the (r values of 

the ccntriluge versus the  l-g simulation,  wc now see that the filter 

performance was vastly improved for the centrifuge simulation.   In 

fact,  the performance was so improved that the value of Q was main- 

tained in order to prevent the filter gain from approaching zero and 

thereby decoupling the filtered estimates from the measurement data 

as discussed in Section  5,3 of Section 5 

The  results of the centrifuge simulation have again verified that 

the linearization is valid, that the effect of the Av approximation is 

minimal,   and that the computation of the filter can be simplified by 

assuming F is constant over the measurement interval and thereby 

4> can  be obtained via the power series approximation.    Except for 

K.p„,  the correlation data for the centrifuge simulation showed that 

there is no observability problem for those coefficients considered for 

the centrifuge simulation.    This concludes the centrifuge simulation 

results. 
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SECTION 7 

SUMMARY AND RECOMMENDATIONS FOR FUTURE STUDY 

The objective of the report was to investigate a data reduction 

technique that obtains estimates of inertial sensor error model coeffi- 

cients from a laboratory calibration of an Inertial Navigation System. 

The results of Sections 5 and 6 reveal  that  this  objective  has   been 

achieved;   however, throughout the preceding sections,  a number  of 

simplifying model assurrptions were made based on calculations of 

and/or assumptionf made concerning sensor and platform design char- 

acteristics,  assumptions of the centrifuge performance and dynamic 

environnu-nt,  and assumptions of the statistical model  used  for  the 

sensor   parameters.    In  this   section,  we  will  briefly  review these 

simplifications and identify those areas where future study is required. 

In  Section  2, we   specified  that  the  performance  model  terms 

were limited to those associated with an acceleration environment.   As 

mentioned in Section 3, a component of centrifuge rtte will be sensed 

by the platform sensors based on the magnitude of the misalignment 

between the two spindle axes and/or variations in either the main or 

CRP drive system.   Measurement data taken thus far on the centrifuge 

environment shows that an expansion of the sensor performance models 

is not necessary; however,  since this assumption is based on the mag- 

nitude rf centrifuge rate applied to the sensors and their sensitivity to 

rate, an evaluation of this assumption must be mads for each platform 
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tested.   Specific  assumptions of the  gyro  and  accelerometer 

sensors were 

(a) The gyro rotor spins at a constant speed about an axis 

of symmetry 

(b) The center of mass of the gyro rotor coincides with 

that of the gyro element. 

(c) The gyro rotor and gimbal support structure are rigid. 

(d) The gyro precession angle A    is maintained small by 

the platform stabilization loop. 

(e) The accelerometer output axis angle A^ is maintained 

at null by the capture loop. 

(f) The gyro and accelerometer transient response can be 

neglected based on time constants of 2 milliseconds and 

0.3 millisecond,  respectively. 

Assumptions (a) through (e) will be valid in most instances simply 

because these are closely controlled design specifications for all plat- 

form sensors used in inertial navigation applications.   Assumption (f) 

is obviously related to the measurement cycle time of the platform.   In 

the simulations,  the assumption is valid,  since the measurement cycle 

time is much larger than the normal criterion that the transient 

response is negligible after three time constants (i.e.,  a time period 

equal to three times the time constant).    This is also an area that is 

closely controlled by design specifications with respect to the platform 
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operational measurement cycle time.    The following assumption? were 

made concerning the platform performance model: 

(a) The platform gimbals are rigid. 

(b) The 2-Hz frequency of the centrifuge sinusoidal accelera- 

tion is within the system-gimbal-servo response. 

(c) The servo error is a deterministic quantity. 

Assumption (a) is also related to the amount of centrifuge rate applied 

to the platform,   since the rigidity of the gimbals is a direct function 

of the rate environment in which the platform was designed to operate. 

Assumption (b) is valid in most instances because of the design trade- 

off that must be made between the stabilization loop gain and bandwidth. 

Normal platform b^ndwidths range from 5 to 20 Hz, depending on the 

application.    Assumption (c) has been found from experience to be quite 

valid based on servo tests and analyses conducted on numerous plat- 

forms.    Therefore,  it is concluded that,   except for those involved with 

the centrifuge rate effect,  the assumptions of Section 2 should be valid 

in most instances of platform testing on the centrifuge.   In the case of 

the centrifuge rate effect, it is recommended that additional simula- 

tions be conducted based on actual centrifuge and platform performance 

data to determine what modifications are required for the sensor and 

platform performance models. 

In   Section   3,  it was assumed that the inertial frame was non- 

rotating   with respect to the fixed stars and that any deviations of the 

local gravity vector caused by mass anomalies were negligible.    Based 

on a calibration time of approximately 4 hours, the inertial frame 

assumption is obviously valid.    The mass anomaly contribution has 
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been verified,  by measurements at the centrifuge test site, to be 

negligible.    Specific assumptions concerning the centrifuge were 

(a) The spindle axes tilts were assumed to be constant 

small angles. 

(b) The dynamic change in the centrifuge radius was 

assumed to be constant at a stabilized g-level. 

(c) The misalignments and centrifuge rate variations 

were assumed to be measurable quanities; hence,  the 

coordinate transformations were assumed to contain 

deterministic elements. 

(d) The platform axes were assumed defined by the physical 

case input axes of the sensors. 

Asssumptions (a) through (c) are based on preliminary data obtained 

from the initial evaluations of the centrifuge.    It is important that 

additional performance data be obtained and evaluated to determine if 

the dynamic model and coordinate transformations defined in Section 3 

are  valid.    It  was   mentioned   in Section   3,  that if the measurement 

accuracy of these ccntriluge parameters is not sufficient to accurately 

account for the centrifuge rate effect or to determine the applied 

acceleration,  then these parameters must be estimated by the filtering 

process.    This assumes tnat the basic form of the dynamic model of 

the centrifuge is known,   and that specific parameters in that model 

require to be identified or estimated.    Therefore, it is extremely 

important to continue an evaluation of the centrifuge performance data 

to verify or modify the assumed models and transformations of 
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Section  3.    Assumption (d) is quite common for platform performance 

models,  since any error in the mounting of the sensors is included in 

the sensor misalignment angles.   In the case of the Group Z terms of 

£q. (3.25),  these also require additional evaluations at the higher 

centrifuge  g-levels  to determine if their contribution can be neglected 

without affecting the accuracy of the error model coefficient estimates. 

In Sections  4 through 6, the following three major assumptions 

were made: 

(a) The statistical model assumed for the sensor parameters 

was a random constant in combination with a random walk. 

(b) The operating random changes of the sensor parameters 

were assumed to be zero mean, gaussian white, distur- 

bance processes. 

(c) The disturbance process was assumed to be independent of 

the  initial condition repeatability sources. 

Section 4.3 of Section 4 contains an extensive discussion concerning 

these assumptions.    Unfortunately, nothing further can be added here, 

except that,  if additional sensor data reveals that the statistical model 

should incorporate correlation, then the simplification proposed by 

Bucy and Joseph, described at the end of Section 4.4,  becomes an 

extremely important result.    The alternative of adjusting the variance 

rather than augmenting the state vector would be a welcome 

simplification. 

All the quest.ons concerning linearization,  Av approximation, 

observability,  and simplifying the computation of * and T were 
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answered by the simulation results of Sections   5  and   6.    Areas 

requiring further study are the effect of modeling errors in the pre- 

dicted filter loops; optimization of the filter performance with respect 

to Q(0),  P{0),  and Rr':(l); and optimization of the torque profile for the 

1-g calibration.    The correlation patterns,  provided by the off-diagonal 

terms of the filtering error covariance matrix,  are an excellent source 

of information for generating an optimal torque profile.    It is believed, 

based on the simulation results,  that the correlation patterns will show 

that there exist "observaoilily regions" where subsets of the model 

coefficient estimates are "optimal," based on the geometry of the 1-g 

calibration problem.    Therefore,  an optimal torque profile would con- 

sist of a  prespecilied Mt of commands that orient the platform axes 

within these regions in the minimum time.    In the case of the centri- 

fuge   calibration,   since   the   filter convergence is so rapid,  it appears 

that an optimal torque program would consist of a prespecified set of 

offset Euler angles to recover the various types of model coefficients. 

This concludes the summary and the recommendations for further 

study. 
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APPENDIX A 

KINEMATIC ACCELERATION OF THE SENSOR FRAME 

The kinematic acceleration of the sensor frame with respect to 

the inertial reference frame is developed using the basic equations of 

Coriolis and the equations for differentiating a vector R. 

The equations for differentiation of a vector R are as follows: 

jk^ ^    R +W    X JR (Al) 

R=l     R+2(wXi)R + w    XR —     —r — r—r —r     — 

+ w    x (w    X R) (A. 2) — r      — r    — 

where 

•  •• R, R - are the scalar velocity and scalar acceleration of R 

w    = angular velocity of the vector R and J_ 

1     = unit vector in the direction of Jl 

The first term of Eq.   (A. 1) is the rate of change of the length of 

vector R,  and the second term (whose direction is perpendicular to R) 

gives the rite of change of JR due to the rotation w   .    The first term 

of Eq.  (A. 2) is the socond rate of change of the length of vector R 

(i.e., linear acceleration along R); the second and third terms are 

both tangential accelerations; and the last term is the centripetal 
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acceleration resulting from the rotation of R and is directed toward 

the center of rotation. 

The equations of Coriolis for rotating bodies are as follows 17]: 

Rk. = Rx. + w. . X R. (A. 3) 
— ij     — ij     -ki     —11 

RK.  = R.. +Ä, . X R.. + Zw, . X R!. 
— IJ     —ij     -ki     —ij        -ki     —ij 

+ ÜJ, . X (w. . x R..) (A. 4) —ki       — ki     — ij 

Equation (A. 3) shows that the rate of change of a vector R.., as viewed 

from a reference frame k,  is equal to the rate of change of the vector 

_R..,  as seen from a moving frame i, plus the angular velocity of the 

moving frame, with respect to the reference frame w.., crossed with 

the original vector.    Equation (A. 4) gives the kinematic acceleration 

of frame j with respect to frame i, as viewed from reference frame k. 

The first term of Eq.  (A. 4) is generally referred to as the "linear" 

acceleration term, as seen from the moving frame i, even though it 

may contain the tangential and centripetal components defined in 

Eq.   (A. 2).    The second term of Eq.   (A. 4) is the tangential accelera- 

tion due to the angular acceleration of the moving frame, with respect 

to the reference frame; the third term is the Coriolis acceleration, 

which is generated by a change in the direction of R..,  relative to the 

moving frame i, plus a portion of the rate of change of the velocity 

w, . X R.., due to a change in magnitude or direction of the position 

vector R...    The fourth term is the centripetal acceleration resulting 
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. from the rotation of the moving frame with respect to the reference 

frame. 

The basic coordinate frames connecting the inertial frame to 

the sensor frame are shown in the vector map of Figure A. 1.    All the 

coordinate frames from inertial space to the sensor axes are defined 

in Section  3.    The basic coordinate frames are the major transforma- 

tions linking inertial space to the sensor axes.    The intermediate 

transformations that are excluded from the basic frames are essen- 

tially those frames that account for misalignments of the physical 

members of the centrifuge,  such as the main spindle,   the counter- 

rotating platform spindle,   and the Inertial Navigation System mounting 

fixture. 

The position of the basic coordinate frames is described in the 

following vector equations  (Reference Figure A. 1). 

R       = R      + R — rs     —rp     — ps (A. 5) 

R       = R       + R — cs     —cr      —rs (A. 6) 

R       =  R       +  R — es     —ec     —cs (A. 7) 

R.    = R.    + R — is    —ic     —es (A. 8) 

The first and second derivatives of Eq.   (A. 5) are: 

• r • r • r 
Rr    ^ Rr    + R — rs     —rp     —ps (A. 9) 
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••r ••- ••r 
Rr = Rr + Rr 

— rs     —rp    —ps (A. 10) 

* r **r Applying the Coriolis Eqs.   (A. 3) and (A. 4) to jl       and R     ,   respec- 

tively, gives: 

Rr     - Rp    + u)       X R 
— ps     —ps     — rp    —ps (A. 11) 

**r **D • r 
Rr     r  RP     + u;r    x R        + 2u; — ps     —ps     — rp     —ps        — rp     — ps 

x RP 

+ w       X (w       X R      ) 
— rp       —rp     —ps (A. 12) 

From Eqs.   (A. 11) and (A. 1 2),   Eqs.   (A. 9) and (A. 1 0) become: 

Iff • r *D R       = R       + Rp     + w       X R 
— rs     —rp     —ps     —rp     —ps 

(A. 13) 

R       ^ R       + RP     + w        X R       + 2w 
— rs     — rp     — ps     — rp     —ps        — rp 

X RP     + w       X (w      X R     ) — ps     -" rp       ~ rp     —ps (A. 14) 

The first and second derivatives of Eq,   (A. 6) are: 

Rc      - Rc    + RC 

— cs     —cr     — rs 
(A. 15) 

••c UC ••c 
RC     - RC     + R 
— cs     —cr     —rs 

(A. 16) 
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• c ••c 
Applying the Conolis equations to R       and ^      yields; 

RC     = RC     + Rr     + w      X R (A. 17) 
— cs     —cr     —rs     —cr     —rs 

••c **c        **r m c 
R       - RC     + R       + w       X R       + 2w 
— cs     —cr     —rs     —cr     —rs        —cr 

X Rr     + w       X(w      X R     ) (A. 18) 
— rs     —cr       —cr     —rs 

v'.bstituting Eqs.   (A. 1 3) and (A, 14) into Eqs.   (A. 17) and (A. 18) yields: 

RC      = RC     +  Rr     4   RP     + w        XR       + u.       XR (A. 19) 
— cs     —cr     — rp     —ps     —cr     —rs     — rp    —ps 

••c **c •• r ••n •  r 
R       = R       + R       + Rp     + i       X R — cs     —cr     —rp     —ps     — rp     —ps 

+ u)C    XR       + 2u       XRP 

— cr     —rs        — rp     —ps 

+ 2 w       X 
— cr 

/Rr     + RP     + w       X R      \ 
\—rp     — P8     -rp     — Ps/ 

+ w        X (w       XR      )+w       X  (w       XR      ) (A. 20) 
— rp      —rp     —ps       — cr       — cr     —rs 

The derivatives of Eq.   (A. 7) are: 

Re    = Re     + Re (A. 21) 
—es     —ec      —cs 

••<>        ••.. ••,. 
Re     « Re     ♦ Re (A. 22) 
— es     — ec      —cs 
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Applying the Coriolis equations to Re     and Ke    yields- 
cs *• cs 7 

i:8^:c+ic
C8-ecxR cs (A. ^3) 

^ecX^ec^cs) (A. 24) 

Substituting Eqs.  (A. 19) and (A. 20) into Eqs.   (A. 23) and (A. 24) gives: 

cr     —rs     —rp     —ps (A. 25) 

i:s^:c + rr + rp + ^ 

+ ^cXRcs+^XRr8^
r

rpXRp8 

+ 2^rx(R;p + Rpp8^rpxRps)t2SrpXlPs 

(A. 26) 

The derivatives of Eq.   (A. 8) are: 

—is     —ie     —et (A. 27) 
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I* «I* ft1 
— is     —le     —es 

(A. 28) 

li **i 
Applying the Cor.olis equations to R      and R       yields 

es ■es 

• i • i • e 
R.     = R.    + R       + to .    X R 
— is     —le     —es     —le     —es (A. 29) 

••i ••i »»e a i • e 
R       -  R .    + R       + w!    X R       + 2 u).    x R 
— is     —le     —es     —le     —es —ic    —es 

+ Ul .     \ (u).    ^   R      ) 
— le       —xe     —es 

(A. 30) 

Substituting Eqs.  (A. 25) and (A. 26) into Eq.  (A. 30) gives an expres- 

sion for the kinematic acceleration of the sensor frame, with respect 

to the inertial frame,  as viewed from the inertial frame. 

••i ••! »»e »»c *T ••o 
R.     ■ R.    4 R       + K      + R      + Rp 

— is     —le     —ec     —cr     —rp     —ps 

+ i1    X   R        + w6    X   R        + wC     X R f w1"     X R 
— le     —es     — ec     —cs     —cr     —rs     —rp    —ps 

}® 

}(D 

2 w.    x/A6      ♦   RC      + Rr      +  RP     + oo       x R 
-ic     \—ec      —cr     —rp     —ps      -ec     —cs 

+ 2 w      X 
— ec 

+ w        XR +w        XR\ 
— cr     —rs     — rp     —ps^ 

/RC     + Rr     + R + w       XR      +UJ      X 
ps      —cr      —rs     —rp R     ) — psf 

cr     \     rp     —ps      -rp     —psj -rp *- RP 
ps 

r® 
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+ w.     X(w.    X P.      ) +u,       X(o.      XR     ) — xe      — xe    —es      — ec       — ec     —cs 

+ w       X(w      XR     )+w       X(u)      XR     ) — cr     ^cr    —rs      — rp      x—rp    —ps 

(T) indicates linear acceleration terms 

(2) indicates tangential acceleration terms 

(3) indicates Coriolis acceleration terms 

(4) indicates centripetal acceleration terms 

1© 
(A.31) 

where 

R       =R       +R      +R      +R —es     — ec     —cr    ~~rp    —ps 

R       = R      + R      + R —cs     —cr     ~rp    ~T>s 

R       = R      + R —rs     —rp     -TJS 
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APPENDIX B 

CALCULATION OF APPLIED ACCELERATION 

GROUP 2 TERMS 

The Group 2 terms of the applied acceleration equation are 

determined for both simulations.    The Group 2 terms discussed in 

Section 3.3 of Section  3, and defined in Eq.  (3,25), are undesirable, 

since they consist of platform rate, platform acceleration, and higher- 

order products and cross-products of the platform rate.    The calcula- 

tions will show that the Group 2 terms can be neglected for both the 

1-g and operating centrifuge simulations. 

B. 1     CALCULATIONS FOR THE i-g SIMULATION 

Since the maximum contribution will occur when the coordinate 

transformations are all identity matrices I, we assume 

Cp = Cr - CC = C Cr ■] (B.l) 

,rk For the 1-g simulation, AW      s O,  so the Group 2 terms reduce er r to 

r2we k
 wPk RP   ♦ wPk RP   ♦ e      rp     ps rp     ps 

wpkwpkRP1 
rp      rp    psj 

as can be seen from Eq.  (3.25). 

The first calculation is to determine the contribution that the 

Group 2 terms make toward the platform rates defined by Eq.   (2.3 3). 

We determine 6u     • 6w    >   and 6u      based on the variables defined in xp yp zp 

Section  5  for  the   1-g  simulation.    We  first need  the acceleration 
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applied to each gyro by the Gr^up 2 terms.    Hence,  we first select 

8 D 
the appropriate values of C   and R^    from Eqs.   (3.20) and (3.18) 

P P8 

respectively.    An expansion of the first Group 2 term of Eq.   (B.Z)is 

0 -2WES 2WEC 0 -CL) zp yp 

^ES 0 0 tu ZP 
0 xp RP ps 

VEC 0 0 L     yp Id xp 0 

(B.3) 

The second term is 

0 • 
-00 zp CO 

yp 

• 
zp 

0 • 
-co xp RP ps 

""yp 
• 

*P 
0 

(B.4) 

and finally the last term is 

-co to zp yp 

-to. xp 

-to to 
yp      xp 

-to to zp yp 

zp 

-to 
L   yp 

xp 

to xp 

RP ps {B.5) 

A list of the parameters used in the calculation is 

WEC ^ 6. 12 X 10"5 rad/sec 

WES = 3.96 X 10"5 rad/sec 

g ■ 32.124 ft/sec2 
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H_    ■ 1.26 X 10"3 rad 
o 

Ji„   = 1.48 X 10"3 rad 
i 

-6 
DIX = 5.25 X 10"" rad/sec/g 

DIY = 4.96 X 10'6 rad/sec/g 

DIZ = 4. 52 X 10'6 rad/sec/g 

K1X =K1V = K1Z ' 1-0g/8 

The platform rate and platform acceleration values taken from the 

computer simulation results are 

w - -4.71 X 10"* rad/sec 

u -  -4.05 X 10"4 rad/sec 

l# ■ 4.60 X 10"4 rad/sec 

w = 4.47 X 10"8 rad/sec2 

i = -1.69 X 10'8 rad/sec2 

E » 3.06 X 10"8 rad/sec2 

zp 

where 

U)._ ■ 
IP At 

i 

[i   - x.   y.   z] 

At = t    - t     .   =1.0 second n       n-l 

When the above parameters are substituted in the expanded terms 

we obtain the following values for the acceleration applied to the three 

gyros. 
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6 A 
SGX 
is 

" 

'arx 
6aox ■ 

_6asx_ 

0.468 X 10"9 g's 

1.228 X 10"^ g's 

1.939 X 10"9 g's 

6A: SGY 
18 

• 
f)aIY 

fiaOY 
r 

6aSY ^ 

0.791 X ID"7 g's 

-2.263 X in"9 g's 

-2. 345 X 10"9 g's 

(B.6) 

ft A' SGZ 
is 

■ 

*Arz. 

oaoz 
oasz , 

-0.866 X 10'7 g's 

-1.586 X 10"9 g's 

1.415 X 10'9 g's 

From Eq.   (2. 33), the deha platform rate equations are 

6wxp      -DIX6aIX 

6uiyp * -DIY 6aIY (B.7) 

Kp - ^ DIX ''aIX " DIZ f'aIZ 

Substituting the values from Eq.   (E.6) into (B.7) gives 

6u;       -  -2. 457 X 10'15 rad/sic xp 

6W -3. 923 X If)"15 rad/sec (B,8) 

bu       ■ 3.917 X 10'15 rad/sec zp 
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Comparing these values with those obtained from the computer 

simulation, we see that the contribution of the Group 2 terms is 

11 orders of magnitude below the 1-g simulation rates.    The Group 2 

term rate contribution can obviously be neglected. 

The same procedure is used to obtain the platform acceleration 

contribution of the Group 2 terms.    The only difference is that CS is 

obtained from Eq.   (3. 19) for the accelerometers.    The acceleration 

applied to the three acceleromcters is 

6A SAX 
is 

&• 

8a 

IAX 

PX 

^a 
OAX, 

i. n6 x io'9 g's 

•1.966 X 10"9 g's 

2. 398 X 10'9 g's 

t>A SAY 

6a 
JAY 

6a PY 

6a 
OAY 

0.204 X 10"9 f's 

■1.291 X 10'9 g's 

1.839 X 10"^ g's 

(B.9) 

6 A SAZ 
is 

• 
6aIAZ 

6apz 

*aOAz' 

-1.640 X 10"^ g's 

-2.853 X 10"7 g's 

0.655 X 10'9 g's 
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From Eq.   (2.34),  the delta platform acceleration equations are 

6AX - K1X 6aIAX 

6AY   . K1Y 6aIAY (B. 10) 

6A,,      K, „ 6aT . „ Z IZ       IAZ 

Substituting the values of Eq.   (B. 9) into (B. 10) gives 

6AX      I. 136 X 10-9 |*g 

6AY  - 0.204 X 10'^ g'l (B. 11) 

6AZ      -1.640 X 10'9 g's 

These values arc 4 ovdrrs of magnitude below the measurement noise 

level of 1 3. 0 X Ü)"    g's.    The Group 2 terms can therefore be com- 

pletely neglected for the  1-g simulation. 

B.2     CALCULATIONS FOR THE CENTRIFUGE SIMULATION 

Tho calculations for the centrifuge simulation are quite similar 

to the 1-g case.    The assumption of Eq.   (B. 1) still holds.    Using the 

platform rates from the centrifuge computer results and a value of 

6w -  3 X 10"     rad/sec (Reference Section 3. 1 of Section 3),  the maxi - 

mum contribution of the AWrk Wpk Rp    term of Eq.   (3. 25) is 0. 009 X cr      rp    ps T    \ / 
-9 10      g's.    Hence,   Eq.   (B.2) can represent the Group '' term equation 

for the centrifuge simulation. 
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A list of the additional parameters required for the centrifuge 

calculation is 

Doz = 4.52 X 10"6 rad/sec/g 

DOOY  ^ 0.29 * 10'6 rad/sec/g2 

DISZ ■ 0.22 X 10"6 rad/sec/g2 

K2Y -  12X10-6 g/g2 

K3Z      ,X10'6 ß/g3 

K ,-6     ;  2 
ipx-   5X10- g/g' 

AX    :    0 

AY -- -10.0002056« ß's 

AZ      1.00031805 g's 

u>ct     90' 

The value of w t was based on an analysis of the delta equations to give 

the worst case condition. The platform rate and platform acceleration 

values taken from the computer simulation results are 

u)       - -5.24 X 10"4 rad/sec 

u) -5.58X 10"4 rad/sec 

U) zp 

xp 

yp 

U) zp 

-0.94X 10"n rad/sec 

-4.43X 10"6 rad/sec2 

3.17 X 10"5 rad/sec2 

3.29X 1Ü"6 rad/sec2 
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Note that  the platform acceleration values are  2 to  3 orders   of 

magnitude larger than those of the 1-g case.    Because of this,  the 

major contribution is from Eq.  (B.4). 

When the above parameters are substituted in the expanded 

terms, we obtain the following values for the acceleration applied to 

the three gyros: 

ftA. is 

6 A: 
SGY 
is 

6A SGZ 
"is 

6a IX 

5a OX 

5a 

5a 

SX. 

IY 

5a OY 

L6aSY 

5a 
IZ 

6a 
OZ 

6a SZ 

0.163 X 10"6 g 

•0.085 X 10"° g 

0.031 X 10"    g 

-0.015 X 10"° g 

0.079 X 10"° g 

•0. 165 X 10'6 g 

0.021 X 10"° g 

•0. 141 X 10      g 

0.018 X 10"° g 

(B.12) 

The following delta approximations, which neglect second-order 6a 

terms, were used in the development of the delta equations that are 

given next. 

' 
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A(a + 6a)    sr 2a 6a 

A(a + 6a)3 ■ 3a2 6a (B.13) 

A(a + 6a) (b + 6b) ^ a 6b + b 6a 

From Eq.  (2.33), the delta platform rate equations are 

6OJ      ■ -DTV 6aTV xp IX      IX 

6wyp ^ ^lY 6aiy + 2DOOY (AZ) tC,aOY 

6wzo      -D07.  ^07.   -DISy. [(AY) ^17  + ^Z) 6aq7.] 

(B.14) 

zp       "OZ '"OZ        ISE 'SZ- 

From the values of Eq.  (B. 12), the results of Eq.  (B. 14) are 

ft«       r .8, 558 X 10'13 rad/sec xp 

6w      ■ 1.202 X 10"13 rad/sec 
yp 

(B. 15) 

ft«.    ■ 6.795 X 10"13 rad/sec zp 

Comparing these values with those obtained from the centrifuge sim- 

ulation shows that the contribution of the Group 2 terms is 9 orders of 

magnitude below the centrifuge simulation rates. 

The acceleration applied to the three accelerometers is 
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^A SAX 
is 

■                  • 

^lAX 

6aPX 
■z 

L6aOAX. 

0. 155 X 10"6 g's 

•0.014 X 10"6 g's 

-0.022 X 10"° g's 
J 

.'.A SAY 
is 

•                   4 

6aIAY 

6aPY 
- 

/'aOAY 

ASAZ oA. 
is 

fta 
IA7 

f,a 
PZ 

^.a 
OAZ 

-0.024 X 10"° g's 

0.u07 X 10"6 g's 

-0. 174 X iO"6 g's 

-0.019 X IO"6 g's 

0.016 X IO"6 g's 

0. 110 X IO'6 g's 

(B.16) 

When the approximations of Eq.   (E. 1 3) are used,   the delta platform 

acceleration equations,   from Eq.   (2.34),   are 

6AX      K1X 6aIAX f KIPX {[(AX) 6aPx] "  nAZ) ^IAX] 

'AY   " K1Y 6aIAY  f ZK2Y (AY)ftaIAY (B.17) 

6AZ      Klz'aIAZ  y ^3Z(AZ)26, IAZ 

Substituting the values of Eq.   (B. 16) into (B. 17) gi gives 
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6AX « 0. 155 X 10'6 g's 

öAy - -0.024 X 10'6 g's (B.I8) 

6AZ -- -0.019 X 10"6 g's 

In the  1-g simulation,  the time between measurements At is 

I second; therefore,  a direct comparison between the 6A values and 

the 13X 10       g's,   1 sigma,  of measurement noise is valid.    In the 

centrifuge simulation,  At      0. 04 second and  13X10*    g-sec,   1  sigma, 

of velocity noise is added each At cycle.    Hence,  a more valid com- 

parison would be in the velocity domain.    Changing Eq.   (B. 18) to 6v 

velocity values over the measurement interval gives 

6v 6.20 X 10"9 g-sec 

6v -0.96 X 10"9 g-sec (B. 19) 

6v7      -0.76 X 10"    g-sec 

These values are 3 to 4 orders of magnitude below the velocity mea- 

surement noise level of 1 3 X 10"    g-sec,   1 sigma. 

The calculations show that the Group 2 terms can be completely 

neglected for the centrifuge simulation. 
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APPENDIX C 

ANALYTIC PARTIALS 

The analytic partials of the state and measurement functions 

for both simulations are contained in this appendix. 

C. 1     ANALYTIC PARTIALS FOR THE 1-g SIMULATION 

The partials of the state function are defined by the following 

(17 V 17) matrix of partial derivatives. 

'K-itwj 
ef.fxft 

8x. 
ilW 

(C. 1) 

i,j = 1,2, .... 17 

where 

f. - are the elements of _f(x) defined in Section 5 

x(t     .It     .) - are the filtered state estimates n- 1 '  n-1 

The first 14 rows of f(x) are zero,  implying that the first 14 rows 

of F contain zero elements. 

i  a  1 thru  14 
F..  = O for 

j :   1 thru 17 
(C.Z) 

Therefore,  only the last three rows of F need to be evamated.    The 

following is a list of the nonzero elements of F in the last three 

rows.    All elements not listed are zero. 
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Define 

x.  = x.(t     4 11     . ■      i = 1, 2, . . . , 17 
i        i   n-1 ' n- 1 

E. .(i, j   - 1,2,3) - are the elements of tht   Euler transfor- 
' mation matrix E in Section 5,   evaluated 

at x. 
i 

ui     ,  w      -  are the platform rate equations defined in 
XP       ZP      Section S,  evaluated  at x. 

CIS      cos  (x.,-) 

C" 16      cos (x •/■ ) 

C 17      cos (x j-,) 

515 i sin (x j c > 

516 -  sin (x j/) 

517 ■ sin (x.-,) 

C217   ^ cos (2 xl7' 

The nonzero elements of F are 

F1S   1       (X13 S17 "  cl7)/c16 

F15   3 = - S17/C16 

Flc  A  ■ (2 x,,  C17 S17 S16 SI 5 + x. . CIS C217 IS,4 13 15 

C17 E13)/C16 

^s^-517^^16 
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F15f 13 ' (2 54 C17 S17 S16 S15 + *4 CIS C217 

+ XJ S17 +S17 TGX)/C16 

S 15,15 '    x4 x13(2 C17 S17 sl6 CIS - S15 C217) 

WES S16 CIS + WEC S16 S15 - x    C17 E,, 

- x6 S17 E,,|/C16 ■izy 

'15.16 '  [^4C17 ^I3(I«|3 S17 " C17) - E22 WEC 

-  S23(WES +;6 S17 S17)1/C16 + (S16 C17 u 

+ 5516 S17 y     )/(C16 C16) zp 

F15,17  "    ^4 -^n'S^ S15 C217 - 2 C17 S17 C15) 

+ WES C15 -  WEC S15  + x4 C17  E33 

x6 S17 £,3 - wxp S17   »•&      C171/C16 

F16.1      *13 C17 +S17 

F16.3   =-C17 

F16.4 ■•|j»t*ll8 C217 - 2 S17 C17 C15) +517 | 
13 

F16.6=-C17E33 

"16.13  = x4(S16S15 C217 - 2 S17 C17 C15) + ClTfi, + TGX) 
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F./:   ,c = x,. x<-(S16 C15 C217 + 2C17 S17 S15 + C15 WEC 16,15        4     13 

+ S15 WES - x6 C17 E32 + x4 S17 E12 

F16. 16 = ^23^4 ^13 C217 + C17 S17(X4 " V] 

F.,   ._ = -w      C17 - u      S17 - x, x1,(2 C17 iil7 S16 S15 16, 17 xp zp 4     13 

+ CIS C217) - WEC S16 C15 - S16 S15 WES 

-x, C17 E4- - JL S17 E,- 6 13        4 33 

F17,1=S16F15.1 

F17.3 ^S16 riS,J 

F17.4 =S16 F15,4 

F17,5 = " E23 

F17.6=S,6F15.6 

F17,13 "S16 F15,13 

F17, 15 = S16 F15. 15 "  *ZZCx5 + WES) + WEC £23 

F17   16 ■ S16 F15   16 + S16 S15(x5 + WES) + WEC S16 C15 

+ w      C17 + w      S17 xp zp 

F17,17 "S16 F15.17 
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The partials of the measurement function are defined by the 

following (3 X 17) matrix of partial derivatives. 

H^t (t t)]t üsfadlaiij 
L       J 

i ■ 1.2.3 j = 1.2....,17 

(C.3) 

where 

h. - are the elements of h(x) defined in Section 5 

x(t   It     .) - are the predicted state estimates n ' n- 1 r 

The following is a list of the nonzero elements of H.    All el 

not listed are zero. 

Define 

ements 

x. = - 
i-WW    i = 1.2 17 

y(t.J = 1,2,3) - are the elements of E evaluated at l* 

S15 8in(x^5) 

The nonzero elements of H are 

"l.T-1 

H - r*        ft.«     A* H1.10 -Ei3 -X14 E23 

Hl.l4=-toE23 
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H - x*   ^F*    - 5*     F*  ) 
"l,15 -xlO[kjlZ     x14 ^22' 

Hl, 16 = S15 *i'o{L,l'l " E21 x14) 

H -     •*     F* 
"l, 17 ■ "x10 ^33 

«2, 8 
= 1 

H2, 11 
- F* 
-E23 

H2, 15 
-x* XI1 

E22 

H2, 16 
= S15 X* Xll E21 

H3, 9 " 
1 

H 3, 12 ' ^33 

H3, 15 = x12 E32 

H3.16=xl2S15E31 

H3,17 = xi2 E13 

C.2     ANALYTIC PARTIALS FOR THE CENTRIFUGE SIMULATION 

The partials of the state function are defined by the following 

(10 X 10) matrix of partial derivatives. 

F[x(tn.lltn.l)'t] 
af. ^•.liV-lM 

ox. 

(C.4) 

i,j = 1,2, . . . , 10 

where 
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f. - are the elements of £(x,t) defined in Section 6 

x(t     4 It     4) - are the filtered state estimates n- i ' n- i 

As in Section C. 1,  only the last three rows of F are required to 

be evaluated,  since the first seven rows contain zero elements. 

i = 1 thru 7 
F.. = O for 

j = 1 thru 10 
(C.5) 

The following is a list of the nonzero elements of F in the last three 

rows.    All elements not listed are zero. 

Define 

x. ■ x.(t     . It     .) 
i       i   n- 1 '  n-1 i P 1,2 10 

E..(i,j = 1,2,3) - are the elements of the Euler transformation 
' matrix defined in Section 6,  evaluated at x. 

i 

w    ,w      - are the platform rate equations defined in Section 6, 
"       "     evaluated at x. 

i 

AX,AY,AZ - are the elements of the applied acceleration 
(AX, AY,AZ) defined in Section 6,   evaluated 
at £.. 

Ij 

DTV., Dn7, DTV, Gl, G2, w t - are parameters defined in 'lY'^OZ'^IX Section 6 

X5 = x3 

x6=x4 

CIO = cos (x10) = cos (x8) 

CI1 = cos (x, j) | cos (x9) 
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C12 ■ cos (x^) COS     (Xjg) 

S10   = cos (xj0) COS   (Xg) 

Sll    =  COS   (XJJ)   =   COS   (XQ) 

S12  = cos (xj2) COS   (XJQ) 

The above identities are based on the structure of the centrifuge 

simulation.    As explained in Section 6,  there are 12 state variables 

that are structured into a 10-element state vector for three different 

options of the simulation program.    Therefore,  the above identities 

show the relationship between the state variables and the elements of 

the state vector for the F partials.    The state vector represents 

different state variables for each option, implying that the analytic 

partials will be different.    The changes for each option are identified 

below. 

Define 

C ■ cos (w t) 
c 

S   - sin (w t) c 

G = 1.0+ G2*S where * represents the product of the two 
variables. 

G1E13 ■ G1*E13*S + E12*G 

WECE13 ■ WEC^EJ.J - WES*E12 

G1E23 = G1*E23*S + E22=!=G 

G1E33 = G1*E33*S + E32*G 
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WECE33 = WEC*E33 - WES*E32 

G1S11  ■ GI*(S1I*C -  E22*S) + E23*G 

G1C11  = 01*(C11*C - C10!::E21*S) + SIO'! E21=.':G 

G1E21  = G1-:'E21-C + E22*S) - E^G 

WECE22 = WEC:;:E22 + WES=::E2? 

G1E31  = G1*(E31
:::C + E^S) - E33-G 

WECE32 ■ WEC-E32 + WCt^S,] 

G1E11 - 01*Ci||*C + E12'::S) - E13*G 

WECE12 - WaC*t|2 ♦ WES;;:E13 

For the Basic Option we define 

x3 " xl 

The nonzero partials for the Basic Option are 

8,1 

8.4 

8,8 

-C12/C11   AX 

.812/Clt*AZ*AY 

C12(-X3*G1E13 + WECE13) +S12r-Doz=: G1E13 

x6(AZ:::GlE23 + AY:GlE33) + WECE33lj >]   /Cll 
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F8,9 =lcl2  C12(-X3*G1S11 -  WECE22) 

+ S12[.Doz=;ci2=;<GlSIl - X6(AZ«C1C1I 

-AY=:S12=:G1E21) - S12=; WECE22] j/C 11 

+ Sll(aixp*C12 +«zp*S12)/(Cll*Cll) 

F8, 10 =    C12(-X3*G1E31  + WECE32) - S12=:w 

+ S12(-Doz*GlE31 +X6*AV:G1E11 

- WECE12) »&    «Cltj/Ctl 

F9J4 ■ -C12=AZ=;AY 

F.,>8 ■ C12^Doz':=GlE13 - U^ijQt*OiEU + AY*CiE33) 9. 

+ WECE33    - S12(-x,*GlE13 + WECE13) * J 3 

F9>9 1 Cll •00Z*Ci2*01Sil - X6(AZ:G1C11 

- AV:!S12: G1E21) - S12*V/ECE22 
- 

-S12 C12(-X3*G1S1I -  WECE22) 

F9   10 ^ CI2(-D07*G1E31 +X6*AY!G1E11 -  WEG El 2 

-w    ) - S12(-x,;:;GlE31  + WECE32 ■)-u     ) xp 3 zp 

F10.1=S11*F8.1 

F10.3 -AZ*AZ 
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F10.4^S,^8.4 

F10 8 ^ Sll: F8   8 - DIY-:!G1E23 - 2x5
:: AZ*GlE33 

+ WEC:. E23 - WES-E22 

F10 9 ■ Sll'Fg   9 - D|Y*G1CII + 2x5:AZ*S12'dE21 

E,1(WEC:C10 +WES=:S10) +w    »€12 +w    =:S12 
21 XD ZD xp zp 

F10.10=Sn   F8.10+2x5  A7-  G,E11 

For Option 1 we define 

x3  = DIX 

The nonzero partials for Option 1 are 

Fg   .      -Ci2/Cll 

All the rest of the partials of Option 1 are identical with those of the 

Basic Option with x,   = Djv^ 

For Option 2 we define 

x3 ■ x2 
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The nonzero partials of Opt;on 2 are 

Fg  2 = -C12/C1I*AX 

F9  2 = S12*AX 

Fl0.2-S11;;tF8.2 

All the rest of the partials of Option 2 are identical with those of the 

Basic Option with x,   = x,. 

The partials of the measurement function arc defined by the 

following (3 X 10) matrix of partial derivatives. 

Hfxlt   It     .),t   1 j      n'  n-1      n J 

ah.lxlt   It     .M   1 iL   v n' n-1     nJ 

dx. 
C.6 

i ■ 1,2,3 j = 1,2, .... 10 

where 

h. - are the elements of h(x»t) defined in Section 6 

x(t-|t     i) - are the predicted state estimates n'  n- l r 

The following is a list of the nonzero elements of H.    As was the 

case for the F matrix, the structure of H is based on the program 

options. 
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Let 

Define 

*i =*i(tJtn-l) i = 1,2....,10 

E..(i,j = 1,2,3) - are the elements of E evaluated at x. 

_ a* 
x7 =x5 

_ k« 
x8 =x6 

x9 =x7 

AX   ,AY   , AZ    - are the elements of the applied acceleration 
evaluated at Ej. 

^"IX'^lY'^lZ " are Pararneter8 defined in Section 6 

C = cos (u t  ) c n 

S = sin (w t ) c n 

G = 1.0 + G2*S 

ClO.Cli,  etc.   - are the same as for the F partials with 
x. replaced by x? 

AX = AX 

AY = AY 

AZ = AZ 

Ejj   rEjj for i.j = 1,2,3 
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Define 

X4X9 = x4 - x9*AZ 

X9AX =x9^AX 

G1E33 = G1*E33*S + E32
::G 

G1E21 -OMBII^C +E22':S)-  E23*G 

GlEU  = GKEj^C +E12=:S)-  E^'^G 

K1Y2X7  -- K1Y + 2x7*AY 

KIZ3X8 = Klz+ 3x8=: AZ*AZ 

For the Basic Option we define 

X4= x2 

The nonzero partials for the Basic Option are 

H1>2-AX 

Hj   7 =-AX-AZ 

Hj   8 = (01*S||«i + E12*G)*X4X9 - X9AX*CI1E33 

Hj   9 = -G1E21(CI2':=X4X9 - X9AX^S!2) 

Hl   10 = K*t**||»C +G1*E32
:::S - E33*G)*X4X9 

+ X9AX*G1E11 

H2  5 = AYs:!AY 
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H2,8 ■ (G1*E23*S +E22*G)«K1Y2X7 

H2,9 = [Oi(Cll«C - C10*E2I*S) +S1ü>;=E21=:G]*K1Y2X7 

H3f6 = (AZ)3 

H3,8 = G1E33*K1Z3X8 

H3,9 = -S12*G1E21*K1Z3X8 

H3,10 = -G1EI1*K1Z3X8 

Option I partials are identical to those for the Basic Opt 

For Option 2 we define 

ion. 

X4 E K1X 

H1.I  •«• 

and the partials are ideatical to the Basic Option with x4 = ^ix 

This completes the analytic partials for th 

simulation. 
e centrifuge 
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